You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Later, the image = pipeline(prompt, callback=lambda *args: xm.mark_step(), generator=generator).images[0] step failed with
/usr/local/lib/python3.11/dist-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py:894: FutureWarning: `callback` is deprecated and will be removed in version 1.0.0. Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`
deprecate(
2%
1/50 [01:16<1:02:27, 76.48s/it]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
[<ipython-input-10-049c86b52afd>](https://localhost:8080/#) in <cell line: 0>()
2 # xm.mark_step compiles and executes the graph after each iteration.
3 # The first few steps will be much slower than the rest.
----> 4 image = pipeline(prompt, callback=lambda *args: xm.mark_step(), generator=generator).images[0]
5 image
1 frames
[/usr/local/lib/python3.11/dist-packages/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py](https://localhost:8080/#) in __call__(self, prompt, height, width, num_inference_steps, timesteps, sigmas, guidance_scale, negative_prompt, num_images_per_prompt, eta, generator, latents, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, output_type, return_dict, cross_attention_kwargs, guidance_rescale, clip_skip, callback_on_step_end, callback_on_step_end_tensor_inputs, **kwargs)
1068 if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1069 progress_bar.update()
-> 1070 if callback is not None and i % callback_steps == 0:
1071 step_idx = i // getattr(self.scheduler, "order", 1)
1072 callback(step_idx, t, latents)
TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'
The text was updated successfully, but these errors were encountered:
📚 Documentation
The README points to a Stable Diffusion notebook to help a user get started. However, this notebook cannot be run successfully:
import torch_xla
step results in an error:This can be fixed by
image = pipeline(prompt, callback=lambda *args: xm.mark_step(), generator=generator).images[0]
step failed withThe text was updated successfully, but these errors were encountered: