-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDualNumber.h
94 lines (82 loc) · 3.59 KB
/
DualNumber.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/***************************************************************************
* Copyright (c) 2019 Viktor Titov (DeepSOIC) <[email protected]> *
* *
* This file is part of the FreeCAD CAx development system. *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Library General Public *
* License as published by the Free Software Foundation; either *
* version 2 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU Library General Public License for more details. *
* *
* You should have received a copy of the GNU Library General Public *
* License along with this library; see the file COPYING.LIB. If not, *
* write to the Free Software Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307, USA *
* *
***************************************************************************/
#ifndef FREECAD_BASE_DUAL_NUMBER_H
#define FREECAD_BASE_DUAL_NUMBER_H
#include <cmath>
namespace Base {
/**
* @brief Dual Numbers aer 2-part numbers like complex numbers, but different
* algebra. They are denoted as a + b*eps, where eps^2 = 0. eps, the nilpotent,
* is like imaginary unit of complex numbers. The neat utility of dual numbers
* is that if you use them instead of normal numbers in a function like sin(),
* derivative is implicitly calculated as a multiplier to the dual part.
*/
class DualNumber
{
public:
double re = 0.0;
double du = 0.0;
public:
DualNumber(){}
DualNumber(double re, double du = 0.0)
: re(re), du(du)
{}
DualNumber operator-() const {return DualNumber(-re,-du);}
};
inline DualNumber operator+(DualNumber a, DualNumber b){
return DualNumber(a.re + b.re, a.du + b.du);
}
inline DualNumber operator+(DualNumber a, double b){
return DualNumber(a.re + b, a.du);
}
inline DualNumber operator+(double a, DualNumber b){
return DualNumber(a + b.re, b.du);
}
inline DualNumber operator-(DualNumber a, DualNumber b){
return DualNumber(a.re - b.re, a.du - b.du);
}
inline DualNumber operator-(DualNumber a, double b){
return DualNumber(a.re - b, a.du);
}
inline DualNumber operator-(double a, DualNumber b){
return DualNumber(a - b.re, -b.du);
}
inline DualNumber operator*(DualNumber a, DualNumber b){
return DualNumber(a.re * b.re, a.re * b.du + a.du * b.re);
}
inline DualNumber operator*(double a, DualNumber b){
return DualNumber(a * b.re, a * b.du);
}
inline DualNumber operator*(DualNumber a, double b){
return DualNumber(a.re * b, a.du * b);
}
inline DualNumber operator/(DualNumber a, DualNumber b){
return DualNumber(a.re / b.re, (a.du * b.re - a.re * b.du) / (b.re * b.re));
}
inline DualNumber operator/(DualNumber a, double b){
return DualNumber(a.re / b, a.du / b);
}
inline DualNumber pow(DualNumber a, double pw){
return Base::DualNumber(std::pow(a.re, pw), pw * std::pow(a.re, pw - 1.0) * a.du);
}
} //namespace
#endif