-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparser.py
executable file
·340 lines (249 loc) · 16.2 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#coding:utf-8
import sys
# import imp
# imp.reload(sys)
# sys.setdefaultencoding('utf-8')
# specific trying import
sys.path = ['/home/tao0920/libs/keras-fix'] + sys.path
sys.path.append("./")
import json
import parser_util
import config
import cnn_test
import pickle
from model_trainer.connective_classifier.feature_functions \
import all_features as _conn_clf_feature_function
from model_trainer.arg_position_classifier.feature_functions\
import all_features as _arg_position_feature_function
from model_trainer.NT_arg_extractor.feature_functions \
import all_features as _constituent_feat_func
from model_trainer.Explicit_classifier.feature_functions \
import all_features as _explicit_feat_func
from model_trainer.Non_Explicit_classifier.feature_functions \
import all_features as _non_explicit_feat_func, prev_context_conn
from model_trainer.PS_Arg2_extractor.feature_functions \
import all_features as _ps_arg2_extractor_feat_func
from model_trainer.PS_Arg1_extractor.feature_functions \
import all_features as _ps_arg1_extractor_feat_func
from model_trainer.Implicit_Arg1_extractor.feature_functions \
import all_features as _implicit_arg1_feat_func
from model_trainer.Implicit_Arg2_extractor.feature_functions \
import all_features as _implicit_arg2_feat_func
import codecs
class DiscourseParser():
def __init__(self, input_dataset, input_run):
self.pdtb_parse = '%s/parses.json' % input_dataset
self.raw_path = '%s/raw' % input_dataset
self.input_run = input_run
self.relations = []
self.explicit_relations = []
self.non_explicit_relations = []
self.documents = json.loads(codecs.open(self.pdtb_parse, encoding="utf-8", errors="ignore").read())
self.parse_dict = self.documents
pass
def parse(self):
## add paragraph info
parser_util.add_paragraph_info_for_parse(self.parse_dict, self.raw_path)
# obtain all connectives in documents
# conns_list: [(DocID, sent_index, conn_indices), ()..]
conns_list = parser_util.get_all_connectives(self.documents)
''' 1.1 Connective classifier '''
print("==> Connective classifier:")
conn_clf_feature_function = _conn_clf_feature_function
conn_clf_feat_path = config.PARSER_CONN_CLF_FEATURE
conn_clf_model_path = config.CONNECTIVE_CLASSIFIER_MODEL
conn_clf_model_output = config.PARSER_CONN_CLF_MODEL_OUTPUT
# extract features for each connective
parser_util.conn_clf_print_feature(self.parse_dict, conns_list, conn_clf_feature_function, conn_clf_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(conn_clf_feat_path, conn_clf_model_path, conn_clf_model_output)
# read model output, obtain the discourse connectives
conns_list = parser_util.conn_clf_read_model_output(conn_clf_model_output, conns_list)
''' 1.2 Arg1 position classifier '''
print("\n==> Arg1 Position Classifier:")
arg_position_feat_func = _arg_position_feature_function
arg_position_feat_path = config.PARSER_ARG_POSITION_FEATURE
arg_position_model_path = config.ARG_POSITION_CLASSIFIER_MODEL
arg_position_model_output = config.PARSER_ARG_POSITION_MODEL_OUTPUT
# extract features
parser_util.arg_position_print_feature(self.parse_dict, conns_list, arg_position_feat_func, arg_position_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(arg_position_feat_path, arg_position_model_path, arg_position_model_output)
# read model output
# split the conns_list into SS_conns_list , PS_conns_list based on Arg1 Position Classifier
SS_conns_list, PS_conns_list = parser_util.arg_position_read_model_output(arg_position_model_output, conns_list)
''' 1.3.1 SS Arguments Extractor '''
print("\n==> SS Arguments Extractor:")
# split the SS_conns_list into SS_conns_parallel_list, SS_conns_not_parallel_list
# parallel connectives: if..then; either..or;...
# not parallel connectives: and; or; ...
SS_conns_parallel_list, SS_conns_not_parallel_list = parser_util.divide_SS_conns_list(SS_conns_list)
constituent_feat_func = _constituent_feat_func
constituent_feat_path = config.PARSER_CONSTITUENT_FEATURE
constituent_model_path = config.NT_CLASSIFIER_MODEL
constituent_model_output = config.PARSER_CONSTITUENT_MODEL_OUTPUT
# connectives: connective object list;
# one connective object for each item of SS_conns_not_parallel_list
connectives = parser_util.get_all_connectives_for_NT(self.parse_dict, SS_conns_not_parallel_list)
# extract features for each constituent of each connective
parser_util.constituent_print_feature(self.parse_dict, connectives, constituent_feat_func, constituent_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(constituent_feat_path, constituent_model_path, constituent_model_output)
# read model output, obtain two Arguments for each not parallel connective
# SS_conns_not_parallel_list_args: [("SS", DocID, sent_index, conn_indices, Arg1, Arg2)]
SS_conns_not_parallel_list_args = \
parser_util.constituent_read_model_output(
constituent_feat_path, constituent_model_output, self.parse_dict, SS_conns_not_parallel_list)
# obtain two Arguments for each parallel connective by rules.
SS_conns_parallel_list_args = parser_util.get_Args_for_SS_parallel_conns(self.parse_dict, SS_conns_parallel_list)
''' 1.3.2.1 PS Arg2 extractor '''
print("\n==> PS Arg2 Extractor:")
# initialize Arg1, Arg2 for PS:
# previous sentence as Arg1, the sentence which contains the connective as Arg2
PS_conns_list_args = parser_util.get_Args_for_PS_conns(self.parse_dict, PS_conns_list)
PS_Arg2_feat_func = _ps_arg2_extractor_feat_func
PS_Arg2_feat_path = config.PARSER_PS_ARG2_FEATURE
PS_Arg2_model_path = config.PS_ARG2_CLASSIFIER_MODEL
PS_Arg2_model_output = config.PARSER_PS_ARG2_MODEL_OUTPUT
# extract features for PS Arg2 extractor
parser_util.ps_arg2_extractor_print_feature \
(self.parse_dict, PS_conns_list_args, PS_Arg2_feat_func, PS_Arg2_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(PS_Arg2_feat_path, PS_Arg2_model_path, PS_Arg2_model_output)
# read model output, obtain Arg2 for PS
PS_conns_list_args = parser_util.ps_arg2_extractor_read_model_output(
PS_Arg2_feat_path, PS_Arg2_model_output, self.parse_dict, PS_conns_list_args)
''' 1.3.2.2 PS Arg1 extractor '''
print("\n==> PS Arg1 Extractor:")
PS_Arg1_feat_func = _ps_arg1_extractor_feat_func
PS_Arg1_feat_path = config.PARSER_PS_ARG1_FEATURE
PS_Arg1_model_path = config.PS_ARG1_CLASSIFIER_MODEL
PS_Arg1_model_output = config.PARSER_PS_ARG1_MODEL_OUTPUT
# extract features for PS Arg1 extractor
parser_util.ps_arg1_extractor_print_feature \
(self.parse_dict, PS_conns_list_args, PS_Arg1_feat_func, PS_Arg1_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(PS_Arg1_feat_path, PS_Arg1_model_path, PS_Arg1_model_output)
# read model output, obtain Arg1 for PS
PS_conns_list_args = parser_util.ps_arg1_extractor_read_model_output(
PS_Arg1_feat_path, PS_Arg1_model_output, self.parse_dict, PS_conns_list_args)
''' 1.4 Explicit Sense Classifier '''
print("\n==> Explicit Sense Classifier:")
# all discourse connective: SS + PS
#conns_list_args:[(source, DocID, sent_index, conn_indices, Arg1, Arg2)...]
conns_list_args = SS_conns_not_parallel_list_args + SS_conns_parallel_list_args + PS_conns_list_args
explicit_feat_func = _explicit_feat_func
explicit_feat_path = config.PARSER_EXPLICIT_CLF_FEATURE
explicit_model_path = config.EXPLICIT_CLASSIFIER_MODEL
explicit_model_output = config.PARSER_EXPLICIT_CLF_MODEL_OUTPUT
# extract features for Explicit Sense Classifier
parser_util.explicit_clf_print_feature(self.parse_dict, conns_list_args, explicit_feat_func, explicit_feat_path)
# put feature file into Explicit Sense Classifier model
parser_util.put_feature_to_model(explicit_feat_path, explicit_model_path, explicit_model_output)
# read model output, obtain the explicit sense for each connective
# conns_args_sense_list: [(source, DocID, sent_index, conn_indices, Arg1, Arg2, sense)]
conns_args_sense_list = parser_util.explicit_clf_read_model_output(explicit_model_output, conns_list_args)
''' explicit relation'''
# obtain explicit relations
self.explicit_relations = parser_util.get_explicit_relations(self.parse_dict, conns_args_sense_list)
''' 2.1 Non-Explicit Sense classifier: on original arguments '''
print("\n==> Non-Explicit Sense classifier: on original arguments")
# obtain all adjacent sentence pairs within each paragraph, but not identified in any Explicit relation
# adjacent_non_exp_list: [(DocID,sent1_index,sent2_index) ]
adjacent_non_exp_list = parser_util.get_adjacent_non_exp_list(self.parse_dict, PS_conns_list)
CNN_input_file_path = "cnn_nop.txt"
parser_util.format_for_CNN(self.parse_dict, adjacent_non_exp_list, CNN_input_file_path)
instances = parser_util.get_CNN_input(CNN_input_file_path)
cnn_noexp_output = cnn_test.test_nop(instances)
# obtain non_explicit relation object list by adjacent_non_exp_list, no sense.
self.non_explicit_relations = parser_util.get_non_explicit_relations(self.parse_dict, adjacent_non_exp_list)
# non_explicit_feat_func = _non_explicit_feat_func
# non_explicit_feat_path = config.PARSER_NON_EXPLICIT_CLF_FEATURE
# non_explicit_model_path = config.NON_EXPLICIT_CLASSIFIER_MODEL
# non_explicit_model_output = config.PARSER_NON_EXPLICIT_CLF_MODEL_OUTPUT
# provide Non-Explicit relations with the Explicit relation context
non_explicit_context_dict = parser_util.get_non_explicit_context_dict(self.explicit_relations)
# extract non_explicit relation features
# parser_util.non_explicit_clf_print_feature \
# (self.parse_dict, self.non_explicit_relations, non_explicit_feat_func, non_explicit_context_dict, prev_context_conn, non_explicit_feat_path)
# put feature file to corresponding model
# parser_util.put_feature_to_model(non_explicit_feat_path, non_explicit_model_path, non_explicit_model_output)
# read model output, add sense for each non_explicit_relations
self.non_explicit_relations = parser_util.cnn_non_explicit_read_model_output(cnn_noexp_output, self.non_explicit_relations)
# self.non_explicit_relations = parser_util.non_explicit_read_model_output(non_explicit_model_output, self.parse_dict,self.non_explicit_relations)
# change arguments from (sent_index, sent_offset) to document offset
# self.non_explicit_relations = parser_util.change_arg_sent_offset(self.non_explicit_relations, self.parse_dict)
# divide the non_explicit_relations into EntRel_relations and Implicit_AltLex_relations
# for Implicit_AltLex_relations (Non_EntRel relations in Non_Explicit), we build Implicit Arg1&Arg2 extractors to label Arg1&Arg2
# for EntRel relations, we use previous sentence as Arg1 and the next one as Arg2.
EntRel_relations, Implicit_AltLex_relations = parser_util.divide_non_explicit_relations(self.non_explicit_relations, self.parse_dict)
''' 2.2.1 Implicit Arg1 Extractor'''
print("\n==> Implicit Arg1 Extractor:")
implicit_arg1_feat_func = _implicit_arg1_feat_func
implicit_arg1_feat_path = config.PARSER_IMPLICIT_ARG1_FEATURE
implicit_arg1_model_path = config.IMPLICIT_ARG1_CLASSIFIER_MODEL
implicit_arg1_model_output = config.PARSER_IMPLICIT_ARG1_MODEL_OUTPUT
# extract features
parser_util.implicit_arg1_print_feature \
(self.parse_dict, Implicit_AltLex_relations, implicit_arg1_feat_func, implicit_arg1_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(implicit_arg1_feat_path, implicit_arg1_model_path, implicit_arg1_model_output)
# read model output, obtain Arg1 for Implicit relations
Implicit_AltLex_relations = parser_util.implicit_arg1_read_model_output(
implicit_arg1_feat_path, implicit_arg1_model_output, self.parse_dict, Implicit_AltLex_relations)
''' 2.2.2 Implicit Arg2 Extractor'''
print("\n==> Implicit Arg2 Extractor:")
implicit_arg2_feat_func = _implicit_arg2_feat_func
implicit_arg2_feat_path = config.PARSER_IMPLICIT_ARG2_FEATURE
implicit_arg2_model_path = config.IMPLICIT_ARG2_CLASSIFIER_MODEL
implicit_arg2_model_output = config.PARSER_IMPLICIT_ARG2_MODEL_OUTPUT
# extract features
parser_util.implicit_arg2_print_feature \
(self.parse_dict, Implicit_AltLex_relations, implicit_arg2_feat_func, implicit_arg2_feat_path)
# put feature file to corresponding model
parser_util.put_feature_to_model(implicit_arg2_feat_path, implicit_arg2_model_path, implicit_arg2_model_output)
# read model output, obtain Arg2 for Implicit relations
Implicit_AltLex_relations = parser_util.implicit_arg2_read_model_output(
implicit_arg2_feat_path, implicit_arg2_model_output, self.parse_dict, Implicit_AltLex_relations)
# Non_Explicit relations
self.non_explicit_relations = EntRel_relations + Implicit_AltLex_relations
''' 2.3 Non-Explicit Sense classifier: on refined arguments'''
print("\n==> Non-Explicit Sense Classifier: on refined arguments")
# change arguments from document offset to (sent_index, sent_offset).
self.non_explicit_relations = parser_util.change_arg_doc_offset(self.non_explicit_relations, self.parse_dict)
# adjacent_imp_list: [(DocID,sent1_index,sent2_index) ]
# adjacent_imp_list =
CNN_input_file_path = "cnn_imp.txt"
instances = parser_util.format_for_impCNN(self.parse_dict, self.non_explicit_relations, CNN_input_file_path)
with open("imp-cnn-inst.json", "w") as fout:
fout.write(json.dumps(instances))
# instances = parser_util.get_CNN_input(CNN_input_file_path)
cnn_imp_output = cnn_test.test_imp(instances)
# extract features
# parser_util.non_explicit_clf_print_feature \
# (self.parse_dict, self.non_explicit_relations, non_explicit_feat_func, non_explicit_context_dict, prev_context_conn, non_explicit_feat_path)
# # put feature file to corresponding model
# parser_util.put_feature_to_model(non_explicit_feat_path, non_explicit_model_path, non_explicit_model_output)
# read model output, add sense for each non_explicit_relations
self.non_explicit_relations = parser_util.cnn_non_explicit_read_model_output(cnn_imp_output,self.non_explicit_relations)
# change arguments from (sent_index, sent_offset) to document offset
self.non_explicit_relations = parser_util.change_arg_sent_offset(self.non_explicit_relations, self.parse_dict)
''' all discourse relations: explicit_relations + non_explicit_relations'''
# obtain all discourse relations generated by the discourse parser.
self.relations = self.explicit_relations + self.non_explicit_relations
if __name__ == '__main__':
input_dataset = sys.argv[1]
input_run = sys.argv[2]
output_dir = sys.argv[3]
# input_dataset = config.CWD + '../data/conll16st-en-zh-dev-train_LDC2016E50/conll16st-en-01-12-16-dev'
# input_run = ''
# output_dir = '/Users/tao/Documents/conll/conll2015_new/data'
parser = DiscourseParser(input_dataset, input_run)
parser.parse()
relations = parser.relations
print("ALL DONE.")
output = open('%s/output.json' % output_dir, 'w')
for relation in relations:
output.write('%s\n' % json.dumps(relation))
output.close()
sys.stderr.write("Finally.\n")