-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathclassify.py
437 lines (369 loc) · 17.4 KB
/
classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division
import onmt
import onmt.markdown
import torch
import argparse
import math
import numpy
import sys
import h5py as h5
import numpy as np
from onmt.inference.predictor import Predictor
parser = argparse.ArgumentParser(description='translate.py')
onmt.markdown.add_md_help_argument(parser)
parser.add_argument('-model', required=True,
help='Path to model .pt file')
parser.add_argument('-sub_model', required=False, default="",
help='Path to (secondary) model .pt file')
parser.add_argument('-pretrained_classifier', required=False, default="",
help='Path to external classifier model .pt file')
parser.add_argument('-streaming', action="store_true",
help="""Use streaming mode (for model with streaming)""")
parser.add_argument('-lm', required=False,
help='Path to language model .pt file. Used for cold fusion')
parser.add_argument('-vocab_list', default="",
help='A Vocabulary list (1 word per line). Only are these words generated during translation.')
parser.add_argument('-autoencoder', required=False,
help='Path to autoencoder .pt file')
parser.add_argument('-input_type', default="word",
help="Input type: word/char")
parser.add_argument('-src', required=True,
help='Source sequence to decode (one line per sequence)')
parser.add_argument('-sub_src', required=False, default="",
help='Source sequence to decode (one line per sequence)')
parser.add_argument('-past_src', required=False, default="",
help='Past Source sequence to decode (one line per sequence)')
parser.add_argument('-src_lang', default='src',
help='Source language')
parser.add_argument('-tgt_lang', default='tgt',
help='Target language')
parser.add_argument('-attributes', default="",
help='Attributes for the decoder. Split them by | ')
parser.add_argument('-ensemble_weight', default="",
help='Weight for ensembles. Default as uniform. Split them by | and they will be normalized later')
parser.add_argument('-sub_ensemble_weight', default="",
help='Weight for ensembles. Default as uniform. Split them by | and they will be normalized later')
parser.add_argument('-stride', type=int, default=1,
help="Stride on input features")
parser.add_argument('-concat', type=str, default="1",
help="Concate sequential audio features to decrease sequence length")
parser.add_argument('-asr_format', default="h5", required=False,
help="Format of asr data h5 or scp")
parser.add_argument('-encoder_type', default='text',
help="Type of encoder to use. Options are [text|img|audio].")
parser.add_argument('-previous_context', type=int, default=0,
help="Number of previous sentence for context")
parser.add_argument('-max_memory_size', type=int, default=512,
help="Number of memory states stored in the buffer for XL models")
parser.add_argument('-tgt',
help='True target sequence (optional)')
parser.add_argument('-output', default='pred.txt',
help="""Path to output the predictions (each line will
be the decoded sequence""")
parser.add_argument('-beam_size', type=int, default=5,
help='Beam size')
parser.add_argument('-batch_size', type=int, default=30,
help='Batch size')
parser.add_argument('-max_sent_length', type=int, default=256,
help='Maximum sentence length.')
parser.add_argument('-replace_unk', action="store_true",
help="""Replace the generated UNK tokens with the source
token that had highest attention weight. If phrase_table
is provided, it will lookup the identified source token and
give the corresponding target token. If it is not provided
(or the identified source token does not exist in the
table) then it will copy the source token""")
parser.add_argument('-start_with_bos', action="store_true",
help="""Add BOS token to the top of the source sentence""")
# parser.add_argument('-phrase_table',
# help="""Path to source-target dictionary to replace UNK
# tokens. See README.md for the format of this file.""")
parser.add_argument('-verbose', action="store_true",
help='Print scores and predictions for each sentence')
parser.add_argument('-sampling', action="store_true",
help='Using multinomial sampling instead of beam search')
parser.add_argument('-dump_beam', type=str, default="",
help='File to dump beam information to.')
parser.add_argument('-bos_token', type=str, default="<s>",
help='BOS Token (used in multilingual model). Default is <s>.')
parser.add_argument('-no_bos_gold', action="store_true",
help='BOS Token (used in multilingual model). Default is <s>.')
parser.add_argument('-n_best', type=int, default=1,
help="""If verbose is set, will output the n_best
decoded sentences""")
parser.add_argument('-no_repeat_ngram_size', type=int, default=0,
help="""If verbose is set, will output the n_best
decoded sentences""")
parser.add_argument('-alpha', type=float, default=0.6,
help="""Length Penalty coefficient""")
parser.add_argument('-beta', type=float, default=0.0,
help="""Coverage penalty coefficient""")
parser.add_argument('-print_nbest', action='store_true',
help='Output the n-best list instead of a single sentence')
parser.add_argument('-ensemble_op', default='mean', help="""Ensembling operator""")
parser.add_argument('-normalize', action='store_true',
help='To normalize the scores based on output length')
parser.add_argument('-no_buffering', action='store_true',
help='To remove buffering for transformer models (slower but more memory)')
parser.add_argument('-src_align_right', action='store_true',
help='To normalize the scores based on output length')
parser.add_argument('-fp16', action='store_true',
help='To use floating point 16 in decoding')
parser.add_argument('-dynamic_quantile', type=int, default=0,
help='To use int8 in decoding (for linear and LSTM layers only).')
parser.add_argument('-gpu', type=int, default=-1,
help="Device to run on")
parser.add_argument('-fast_translate', action='store_true',
help='Using the fast decoder')
parser.add_argument('-global_search', action='store_true',
help='Using the global beam search for streaming')
parser.add_argument('-dynamic_max_len', action='store_true',
help='Using the fast decoder')
parser.add_argument('-dynamic_max_len_scale', type=float, default=5.0,
help='Using the fast decoder')
parser.add_argument('-dynamic_min_len_scale', type=float, default=0.0,
help='Using the fast decoder')
def _is_oversized(batch, new_sent_size, batch_size):
"""
Function to see if adding new sentence will make the current batch
:param batch:
:param new_sent_size:
:param batch_size_words:
:return:
"""
# Always return False if empty
if len(batch) == 0:
return False
current_max_length = max([sent.size(0) for sent in batch])
# Because adding a new sentence will potential enlarge the area of the rectangle, we need to check
if max(current_max_length, new_sent_size) * (len(batch) + 1) > batch_size:
return True
return False
def report_score(name, score_total, words_total):
print("%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name, score_total / (words_total + 1e-9),
name, math.exp(-score_total / (words_total + 1e-9))))
def addone(f):
for line in f:
yield line
yield None
def get_sentence_from_tokens(tokens, input_type):
if input_type == 'word':
sent = " ".join(tokens)
elif input_type == 'char':
sent = "".join(tokens)
else:
raise NotImplementedError
return sent
def main():
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Always pick n_best
opt.n_best = opt.beam_size
if opt.output == "stdout":
outF = sys.stdout
else:
outF = open(opt.output, 'w')
pred_score_total, pred_words_total, gold_score_total, gold_words_total = 0, 0, 0, 0
src_batches = []
src_batch, tgt_batch = [], []
count = 0
tgtF = open(opt.tgt) if opt.tgt else None
in_file = None
if opt.src == "stdin":
in_file = sys.stdin
opt.batch_size = 1
elif opt.encoder_type == "audio" and opt.asr_format == "h5":
in_file = h5.File(opt.src, 'r')
elif opt.encoder_type == "audio" and opt.asr_format == "scp":
# import kaldiio
# from kaldiio import ReadHelper
from onmt.data.audio_utils import ArkLoader
audio_data = open(opt.src)
scp_reader = ArkLoader()
else:
in_file = open(opt.src)
# if opt.streaming:
# if opt.batch_size != 1:
# opt.batch_size = 1
# print("Warning: Streaming only works with batch size 1")
#
# if opt.global_search:
# print(" Using global search algorithm ")
# from onmt.inference.global_translator import GlobalStreamTranslator
# translator = GlobalStreamTranslator(opt)
# else:
# translator = StreamTranslator(opt)
# else:
# if opt.fast_translate:
# translator = FastTranslator(opt)
#
# # TODO: load sub model
# else:
# translator = onmt.Translator(opt)
predictor = Predictor(opt)
# Audio processing for the source batch
if opt.encoder_type == "audio":
"""
For Audio we will have to group samples by the total number of frames in the source
"""
past_audio_data = open(opt.past_src) if opt.past_src else None
past_src_batches = list()
s_prev_context = []
t_prev_context = []
i = 0
concats = opt.concat.split("|")
n_models = len(opt.model.split("|"))
if len(concats) == 1:
concats = concats * n_models
assert len(concats) == n_models, "The number of models must match the number of concat configs"
for j, _ in enumerate(concats):
src_batches.append(list()) # We assign different inputs for each model in the ensemble
if past_audio_data:
past_src_batches.append(list())
sub_src = open(opt.sub_src) if opt.sub_src else None
sub_src_batch = list()
while True:
try:
scp_path = next(audio_data).strip().split()[1]
line = scp_reader.load_mat(scp_path)
except StopIteration:
break
if opt.stride != 1:
line = line[0::opt.stride]
if past_line: past_line = past_line[0::opt.stride]
line = torch.from_numpy(line)
past_line = torch.from_numpy(past_line) if past_audio_data else None
original_line = line
src_length = line.size(0)
"""
Handling different concatenation size for different models, to make ensembling possible
"""
if _is_oversized(src_batches[0], src_length, opt.batch_size):
# If adding a new sentence will make the batch oversized
# Then do translation now, and then free the list
print("Batch sizes :", len(src_batches[0]), len(tgt_batch))
pred_score = predictor.predict(src_batches)
count = get_result(pred_score, predictor, count, outF)
# count, pred_score, pred_words, gold_score, goldWords = \
# translate_batch(opt, tgtF, count, outF, translator,
# src_batches[0], tgt_batch, pred_batch,
# pred_score,
# pred_length, gold_score,
# num_gold_words,
# all_gold_scores, opt.input_type)
# pred_score_total += pred_score
# pred_words_total += pred_words
# gold_score_total += gold_score
# gold_words_total += goldWords
src_batch, tgt_batch, sub_src_batch = [], [], []
for j, _ in enumerate(src_batches):
src_batches[j] = []
if past_audio_data: past_src_batches[j] = []
# handling different concatenation settings (for example 4|1|4)
for j, concat_ in enumerate(concats):
concat = int(concat_)
line = original_line
# TODO: move this block to function
if concat != 1:
add = (concat - line.size()[0] % concat) % concat
z = torch.FloatTensor(add, line.size()[1]).zero_()
line = torch.cat((line, z), 0)
line = line.reshape((line.size()[0] // concat, line.size()[1] * concat))
if past_audio_data:
add = (concat - past_line.size()[0] % concat) % concat
z = torch.FloatTensor(add, past_line.size()[1]).zero_()
past_line = torch.cat((past_line, z), 0)
past_line = past_line.reshape((past_line.size()[0] // concat, past_line.size()[1] * concat))
src_batches[j].append(line)
if past_audio_data: past_src_batches[j].append(past_line)
# read the "sub" input which is text based
# this is done for ensemble between a speech model and a text based model
if opt.sub_src:
sline = sub_src.readline().strip()
if opt.input_type == 'word':
src_tokens = sline.split()
elif opt.input_type == 'char':
src_tokens = list(sline.strip())
sub_src_batch += [src_tokens]
# catch the last batch
if len(src_batches[0]) != 0:
print("Batch size:", len(src_batches[0]), len(tgt_batch), len(sub_src_batch))
pred_score = predictor.predict(src_batches)
count = get_result(pred_score, predictor, count, outF)
src_batch, tgt_batch = [], []
for j, _ in enumerate(src_batches):
src_batches[j] = []
if past_audio_data: past_src_batches[j] = []
# Text processing for MT
else:
raise NotImplementedError
if tgtF:
tgtF.close()
def get_result(pred_score, predictor, count, outF):
tgt_dict = predictor.tgt_dict.idxToLabel
for b in range(len(pred_score)):
count += 1
out_string = "PRED %d " % count
for i in range(len(pred_score[b])):
prob = pred_score[b][i] * 100
label = tgt_dict[i]
out_string += "%s: %.2f ; " % (label, prob)
print(out_string)
outF.write(out_string + '\n')
outF.flush()
return count
#print("PRED SCORE", pred_score[b])
#
# pred_score_total = sum(score[0].item() for score in pred_score)
# pred_words_total = sum(len(x[0]) for x in pred_batch)
# gold_score_total = 0
# gold_words_total = 0
# if tgtF is not None:
# gold_score_total = sum(gold_score).item()
# gold_words_total = num_gold_words
#
# for b in range(len(pred_batch)):
#
# count += 1
#
# if not opt.print_nbest:
# outF.write(get_sentence_from_tokens(pred_batch[b][0], input_type) + '\n')
# outF.flush()
# else:
# for n in range(opt.n_best):
# idx = n
# output_sent = get_sentence_from_tokens(pred_batch[b][idx], input_type)
# out_str = "%s ||| %.4f" % (output_sent, pred_score[b][idx])
# outF.write(out_str + '\n')
# outF.flush()
#
# if opt.verbose:
# if opt.encoder_type == "text":
# src_sent = " ".join(src_batch[b])
# print('SRC %d: %s' % (count, src_sent))
# print('PRED %d: %s' % (count, get_sentence_from_tokens(pred_batch[b][0], input_type)))
# print("PRED SCORE: %.4f" % pred_score[b][0])
#
# if tgtF is not None:
# tgt_sent = get_sentence_from_tokens(tgt_batch[b], input_type)
# if translator.tgt_dict.lower:
# tgt_sent = tgt_sent.lower()
# print('GOLD %d: %s ' % (count, tgt_sent))
# print("GOLD SCORE: %.4f" % gold_score[b])
# print()
# if opt.print_nbest:
# print('\n BEST HYP:')
# for n in range(opt.n_best):
# idx = n
# out_str = "%s ||| %.4f" % (" ".join(pred_batch[b][idx]), pred_score[b][idx])
# print(out_str)
# print('')
#
# return count, pred_score_total, pred_words_total, gold_score_total, gold_words_total
if __name__ == "__main__":
main()