-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfastscape_RB+GPU.cpp
466 lines (374 loc) · 14.9 KB
/
fastscape_RB+GPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <fenv.h> //Used to catch floating point NaN issues
#include <fstream>
#include <iomanip>
#include <iostream>
#include <limits>
#include "random.hpp"
#include <vector>
#include "CumulativeTimer.hpp"
void PrintDEM(
const std::string filename,
const double *const h,
const int width,
const int height
){
std::ofstream fout(filename.c_str());
fout<<"ncols "<<(width- 2)<<"\n";
fout<<"nrows "<<(height-2)<<"\n";
fout<<"xllcorner 637500.000\n"; //Arbitrarily chosen value
fout<<"yllcorner 206000.000\n"; //Arbitrarily chosen value
fout<<"cellsize 500.000\n"; //Arbitrarily chosen value
fout<<"NODATA_value -9999\n";
for(int y=1;y<height-1;y++){
for(int x=1;x<width-1;x++)
fout<<h[y*width+x]<<" ";
fout<<"\n";
}
}
class FastScape_RBGPU {
private:
const int NO_FLOW = -1;
const double SQRT2 = 1.414213562373095048801688724209698078569671875376948;
public:
//NOTE: Having these constants specified in the class rather than globally
//results in a significant speed loss. However, it is better to have them here
//under the assumption that they'd be dynamic in a real implementation.
const double keq = 2e-6;
const double neq = 2;
const double meq = 0.8;
const double ueq = 2e-3;
const double dt = 1000.;
const double dr[8] = {1,SQRT2,1,SQRT2,1,SQRT2,1,SQRT2};
const double tol = 1e-3;
const double cell_area = 40000;
private:
int width; //Width of DEM
int height; //Height of DEM
int size; //Size of DEM (width*height)
double *h; //Digital elevation model (height)
double *accum; //Flow accumulation at each point
int *rec; //Index of receiving cell
int *donor; //Indices of a cell's donor cells
int *ndon; //How many donors a cell has
int *stack; //Indices of cells in the order they should be processed
int stack_width; //Number of cells allowed in the stack
int level_width; //Number of cells allowed in a level
//nshift offsets:
//1 2 3
//0 4
//7 6 5
int nshift[8]; //Offset from a focal cell's index to its neighbours
int *levels; //Indices of locations in stack where a level begins and ends
int nlevel; //Number of levels used
CumulativeTimer Tmr_Step1_Initialize;
CumulativeTimer Tmr_Step2_DetermineReceivers;
CumulativeTimer Tmr_Step3_DetermineDonors;
CumulativeTimer Tmr_Step4_GenerateOrder;
CumulativeTimer Tmr_Step5_FlowAcc;
CumulativeTimer Tmr_Step6_Uplift;
CumulativeTimer Tmr_Step7_Erosion;
CumulativeTimer Tmr_Overall;
private:
void GenerateRandomTerrain(){
//srand(std::random_device()());
for(int y=0;y<height;y++)
for(int x=0;x<width;x++){
const int c = y*width+x;
h[c] = uniform_rand_real(0,1);
if(x == 0 || y==0 || x==width-1 || y==height-1)
h[c] = 0;
if(x == 1 || y==1 || x==width-2 || y==height-2)
h[c] = 0;
}
}
public:
FastScape_RBGPU(const int width0, const int height0)
: nshift{-1,-width0-1,-width0,-width0+1,1,width0+1,width0,width0-1}
{
Tmr_Overall.start();
Tmr_Step1_Initialize.start();
width = width0;
height = height0;
size = width*height;
h = new double[size];
GenerateRandomTerrain();
Tmr_Step1_Initialize.stop();
Tmr_Overall.stop();
}
~FastScape_RBGPU(){
delete[] h;
}
private:
void ComputeReceivers(){
const int height = this->height;
const int width = this->width;
#pragma acc parallel loop independent collapse(2) present(this,nshift[0:8],h[0:size],rec[0:size]) //default(none) present(this,h,rec,dr,nshift)
for(int y=2;y<height-2;y++)
for(int x=2;x<width-2;x++){
const int c = y*width+x;
//The slope must be greater than zero for there to be downhill flow;
//otherwise, the cell is marekd NO_FLOW
double max_slope = 0;
int max_n = NO_FLOW;
#pragma acc loop seq
for(int n=0;n<8;n++){
double slope = (h[c] - h[c+nshift[n]])/dr[n];
if(slope>max_slope){
max_slope = slope;
max_n = n;
}
}
rec[c] = max_n;
}
}
void ComputeDonors(){
const int height = this->height;
const int width = this->width;
//The B&W method of developing the donor array has each focal cell F inform
//its receiving cell R that F is a donor of R. Unfortunately, parallelizing
//this is difficult because more than one cell might be informing R at any
//given time. Atomics are a solution, but they impose a performance cost
//(though using the latest and greatest hardware decreases this penalty).
//Instead, we invert the operation. Each focal cell now examines its
//neighbours to see if it receives from them. Each focal cell is then
//guaranteed to have sole write-access to its location in the donor array.
#pragma acc parallel loop independent collapse(2) default(none) present(this,rec,nshift,donor,ndon)
for(int y=1;y<height-1;y++)
for(int x=1;x<width-1;x++){
const int c = y*width+x;
ndon[c] = 0;
#pragma acc loop seq
for(int ni=0;ni<8;ni++){
const int n = c+nshift[ni];
if(rec[n]!=NO_FLOW && n+nshift[rec[n]]==c){
donor[8*c+ndon[c]] = n;
ndon[c]++;
}
}
}
}
void GenerateOrder(){
//#pragma acc update host(rec[0:size],donor[0:8*size],ndon[0:size])
//Trying as a local
int nstack = 0;
levels[0] = 0;
nlevel = 1;
const int height = this->height;
const int width = this->width;
//TODO: Outside edge is always NO_FLOW. Maybe this can get loaded once?
//Load cells without dependencies into the queue
#pragma acc parallel loop collapse(2) independent num_gangs(10) default(none) copy(nstack) present(this,rec[0:size],stack[0:stack_width])
for(int y=1;y<height-1;y++)
for(int x=1;x<width -1;x++){
const int c = y*width+x;
if(rec[c]==NO_FLOW){
int mystack;
#pragma acc atomic capture
mystack = nstack++;
stack[mystack] = c;
// assert(mystack<stack_width);
}
}
//Last cell of this level
levels[nlevel++] = nstack;
assert(nlevel<level_width);
//#pragma acc update host(stack[0:stack_width])
int level_bottom = -1;
#ifndef PGI_WAR
int level_top = 0;
#else
volatile int level_top = 0;
int level_num;
#endif
///////////////////////////
//Enabling the pragmas below breaks everything
///////////////////////////
while(level_bottom<level_top){
level_bottom = level_top;
level_top = nstack;
#ifdef PGI_WAR
level_num = level_top - level_bottom;
#endif
#pragma acc parallel loop independent num_gangs(100) default(none) copy(nstack) present(this,ndon[0:size],donor[0:8*size],stack[0:stack_width])
#ifdef PGI_WAR
for(int si=0;si<level_num;si++){
const auto c = stack[si+level_bottom];
#else
for(int si=level_bottom;si<level_top;si++){
const auto c = stack[si];
#endif
const auto ncount = ndon[c];
int mystack;
#pragma acc atomic capture
{
mystack = nstack;
nstack += ncount;
}
#pragma acc loop seq
for(int k=0;k<ndon[c];k++){
const auto n = donor[8*c+k];
stack[mystack++] = n;
// assert(nstack<=stack_width);
}
}
levels[nlevel++] = nstack; //Starting a new level
}
// std::cout<<"nstack = "<<nstack<<std::endl;
// std::cout<<"nlevel = "<<nlevel<<std::endl;
//End condition for the loop places two identical entries
//at the end of the stack. Remove one.
nlevel--;
//#pragma acc update device(stack[0:size],levels[0:size],nlevel)
assert(levels[nlevel-1]==nstack);
#pragma acc update device(nlevel)
//#pragma acc update device(stack[0:size],levels[0:size],nlevel)
}
void ComputeFlowAcc(){
#pragma acc parallel loop default(none) present(this,accum)
for(int i=0;i<size;i++)
accum[i] = cell_area;
//nlevel-1 to nlevel: Doesn't exist, since nlevel is outside the bounds of level
//nlevel-2 to nlevel-1: Uppermost heights
//nlevel-3 to nlevel-2: Region just below the uppermost heights
// #pragma acc parallel default(none) present(this,accum,levels,nshift,rec,stack)
for(int li=nlevel-3;li>=1;li--){
const int lvlstart = levels[li];
const int lvlend = levels[li+1];
#pragma acc parallel loop independent default(none) present(this,accum,levels,nshift,rec,stack)
for(int si=lvlstart;si<lvlend;si++){
const int c = stack[si];
#pragma acc loop seq
for(int k=0;k<ndon[c];k++){
const auto n = donor[8*c+k];
accum[c] += accum[n];
}
}
}
}
void AddUplift(){
const int height = this->height;
const int width = this->width;
#pragma acc parallel loop collapse(2) independent default(none) present(this,h)
for(int y=2;y<height-2;y++)
for(int x=2;x<width-2;x++){
const int c = y*width+x;
h[c] += ueq*dt;
}
}
void Erode(){
// #pragma acc parallel default(none) present(this,levels,stack,nshift,rec,accum,h)
for(int li=1;li<nlevel-1;li++){
const int lvlstart = levels[li];
const int lvlend = levels[li+1];
#pragma acc parallel loop independent default(none) present(this,levels,stack,nshift,rec,accum,h)
for(int si=lvlstart;si<lvlend;si++){
const int c = stack[si]; //Cell from which flow originates
const int n = c+nshift[rec[c]]; //Cell receiving the flow
const double length = dr[rec[c]];
const double fact = keq*dt*std::pow(accum[c],meq)/std::pow(length,neq);
const double h0 = h[c]; //Elevation of focal cell
const double hn = h[n]; //Elevation of neighbouring (receiving, lower) cell
double hnew = h0; //Current updated value of focal cell
double hp = h0; //Previous updated value of focal cell
double diff = 2*tol; //Difference between current and previous updated values
#pragma acc loop seq
while(std::abs(diff)>tol){
hnew -= (hnew-h0+fact*std::pow(hnew-hn,neq))/(1.+fact*neq*std::pow(hnew-hn,neq-1));
diff = hnew - hp;
hp = hnew;
}
h[c] = hnew;
}
}
}
public:
void run(const int nstep){
Tmr_Overall.start();
Tmr_Step1_Initialize.start();
accum = new double[size];
rec = new int[size];
ndon = new int[size];
donor = new int[8*size];
//! initializing rec
//#pragma acc parallel loop present(this,rec)
for(int i=0;i<size;i++)
rec[i] = NO_FLOW;
//#pragma acc parallel loop present(this,ndon)
for(int i=0;i<size;i++)
ndon[i] = 0;
#pragma acc enter data copyin(this[0:1],h[0:size],nshift[0:8],rec[0:size],ndon[0:size]) create(accum[0:size],donor[0:8*size])
//TODO: Make smaller, explain max
stack_width = size; //Number of stack entries available to each thread
level_width = size; //Number of level entries available to each thread
stack = new int[stack_width];
//It's difficult to know how much memory should be allocated for levels. For
//a square DEM with isotropic dispersion this is approximately sqrt(E/2). A
//diagonally tilted surface with isotropic dispersion may have sqrt(E)
//levels. A tortorously sinuous river may have up to E*E levels. We
//compromise and choose a number of levels equal to the perimiter because
//why not?
levels = new int[level_width]; //TODO: Make smaller to `2*width+2*height`
#pragma acc enter data create(stack[0:stack_width],levels[0:level_width])
Tmr_Step1_Initialize.stop();
//#pragma acc kernels present(accum,rec,ndon,donor,stack,nlevel,levels)
//#pragma acc loop seq
for(int step=0;step<=nstep;step++){
Tmr_Step2_DetermineReceivers.start (); ComputeReceivers (); Tmr_Step2_DetermineReceivers.stop ();
Tmr_Step3_DetermineDonors.start (); ComputeDonors (); Tmr_Step3_DetermineDonors.stop ();
Tmr_Step4_GenerateOrder.start (); GenerateOrder (); Tmr_Step4_GenerateOrder.stop ();
Tmr_Step5_FlowAcc.start (); ComputeFlowAcc (); Tmr_Step5_FlowAcc.stop ();
Tmr_Step6_Uplift.start (); AddUplift (); Tmr_Step6_Uplift.stop ();
Tmr_Step7_Erosion.start (); Erode (); Tmr_Step7_Erosion.stop ();
#pragma omp master
if( step%20==0 )
std::cout<<"p Step = "<<step<<std::endl;
}
Tmr_Overall.stop();
std::cout<<"t Step1: Initialize = "<<std::setw(15)<<Tmr_Step1_Initialize.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step2: DetermineReceivers = "<<std::setw(15)<<Tmr_Step2_DetermineReceivers.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step3: DetermineDonors = "<<std::setw(15)<<Tmr_Step3_DetermineDonors.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step4: GenerateOrder = "<<std::setw(15)<<Tmr_Step4_GenerateOrder.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step5: FlowAcc = "<<std::setw(15)<<Tmr_Step5_FlowAcc.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step6: Uplift = "<<std::setw(15)<<Tmr_Step6_Uplift.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Step7: Erosion = "<<std::setw(15)<<Tmr_Step7_Erosion.elapsed() <<" microseconds"<<std::endl;
std::cout<<"t Overall = "<<std::setw(15)<<Tmr_Overall.elapsed() <<" microseconds"<<std::endl;
#pragma acc exit data copyout(h[0:size]) delete(this,accum[0:size],rec[0:size],ndon[0:size],donor[0:8*size],stack[0:stack_width],nlevel,levels[0:level_width])
delete[] accum;
delete[] rec;
delete[] ndon;
delete[] stack;
delete[] donor;
delete[] levels;
}
// std::cerr<<"Levels: ";
// for(auto &l: levels)
// std::cerr<<l<<" ";
// std::cerr<<std::endl;
double* getH() const {
return h;
}
};
int main(int argc, char **argv){
//feenableexcept(FE_ALL_EXCEPT);
if(argc!=5){
std::cerr<<"Syntax: "<<argv[0]<<" <Dimension> <Steps> <Output Name> <Seed>"<<std::endl;
return -1;
}
seed_rand(std::stoul(argv[4]));
std::cout<<"A FastScape RB+GPU"<<std::endl;
std::cout<<"C Richard Barnes TODO"<<std::endl;
std::cout<<"h git_hash = "<<GIT_HASH<<std::endl;
std::cout<<"m Random seed = "<<argv[4]<<std::endl;
const int width = std::stoi(argv[1]);
const int height = std::stoi(argv[1]);
const int nstep = std::stoi(argv[2]);
CumulativeTimer tmr(true);
FastScape_RBGPU tm(width,height);
tm.run(nstep);
std::cout<<"t Total calculation time = "<<std::setw(15)<<tmr.elapsed()<<" microseconds"<<std::endl;
PrintDEM(argv[3], tm.getH(), width, height);
return 0;
}