|
| 1 | +--- |
| 2 | +output: html_document |
| 3 | +editor_options: |
| 4 | + chunk_output_type: console |
| 5 | +--- |
| 6 | + |
1 | 7 | # Working with Large Data |
2 | 8 |
|
3 | 9 | **Learning objectives:** |
4 | 10 |
|
5 | | -- THESE ARE NICE TO HAVE BUT NOT ABSOLUTELY NECESSARY |
| 11 | +- Retrieving Statcast (Baseball Savant) multiple seasons data |
| 12 | +- Using Apache Arrow and Parquet format |
| 13 | +- Using DuckDB |
| 14 | +- Using MySQL (PostgreSQL) |
| 15 | +- Launch Angles and Velocities, Revisited |
| 16 | + |
| 17 | +```{r setup_ch_12, message = FALSE, warning = FALSE} |
| 18 | +suppressMessages(library(tidyverse)) |
| 19 | +# library(RPostgres) # using PostgreSQL instead of MariaDB |
| 20 | +library(abdwr3edata) |
| 21 | +library(baseballr) |
| 22 | +library(fs) |
| 23 | +theme_set(theme_classic()) |
| 24 | +
|
| 25 | +crcblue <- "#2905a1" |
| 26 | +
|
| 27 | +crc_fc <- c("#2905a1", "#e41a1c", "#4daf4a", "#984ea3") |
| 28 | +
|
| 29 | +options(digits = 3) |
| 30 | +
|
| 31 | +options(timeout = max(600, getOption("timeout"))) |
| 32 | +``` |
| 33 | + |
| 34 | +## Introduction |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | + |
| 39 | + |
| 40 | +- Chapter 11 - Introduction to MySQL for building baseball databases |
| 41 | +- How to use `abdwr3edata` package functions to retrieve mutliple seasons data |
| 42 | +- Using R's (.rds) internal data format |
| 43 | +- Using Apache arrow and parquet data formats |
| 44 | +- Using DuckDB (OLAP) |
| 45 | + |
| 46 | +## Acquiring a Year's Worth of Statcast Data |
| 47 | + |
| 48 | +Let's say that we want to retrieve the full 2023 season data from Statcast. |
| 49 | + |
| 50 | +```{r statcast_2023} |
| 51 | +# getting 2023 season statcast data |
| 52 | +# data_dir <- "./data" |
| 53 | +# statcast_dir <- path(data_dir, "sc_2023") |
| 54 | +# if (!dir.exists(statcast_dir)) { |
| 55 | +# dir.create(statcast_dir) |
| 56 | +# } |
| 57 | +# |
| 58 | +# statcast_season(year = 2023, dir = statcast_dir) |
| 59 | +# |
| 60 | +# sc2023 <- statcast_dir |> |
| 61 | +# statcast_read_csv(pattern = "sc_2023.+\\.csv") |
| 62 | +``` |
| 63 | + |
| 64 | +Do the same process for the 2021 and 2022 season, changing the corresponding year. |
| 65 | + |
| 66 | +Now, let's verify the validity of the 2023 season data. |
| 67 | + |
| 68 | +```{r verify_2023_data} |
| 69 | +tempfile_loc <- tempfile() |
| 70 | +url <- 'https://statcast-data.atl1.digitaloceanspaces.com/statcast_2023.rds' |
| 71 | +download.file(url, tempfile_loc) |
| 72 | +
|
| 73 | +sc2023 <- read_rds(tempfile_loc) |
| 74 | +
|
| 75 | +dim(sc2023) |
| 76 | +
|
| 77 | +sc2023 |> |
| 78 | + head() |> |
| 79 | + glimpse() |
| 80 | +``` |
| 81 | + |
| 82 | +```{r sc2023} |
| 83 | +sc2023 |> |
| 84 | + group_by(game_type) |> |
| 85 | + summarize( |
| 86 | + num_games = n_distinct(game_pk), |
| 87 | + num_pitches = n(), |
| 88 | + num_hr = sum(events == "home_run", na.rm = TRUE) |
| 89 | + ) |
| 90 | +``` |
| 91 | + |
| 92 | +## Storing Large Data Efficiently |
| 93 | + |
| 94 | +A full season of Statcast data contains over 700k rows and nearly 118 variables. |
| 95 | + |
| 96 | +```{r sc2023_size} |
| 97 | +sc2023 |> |
| 98 | + object.size() |> |
| 99 | + print(units = "MB") |
| 100 | +``` |
| 101 | + |
| 102 | +The total memory size is around 643MB. The CSVs occupy around 72% of the data stored into memory. |
| 103 | + |
| 104 | +## Using R's internal data format |
| 105 | + |
| 106 | +```{r statcast_rds} |
| 107 | +# disk_space_rds <- path("./data") |> |
| 108 | +# dir_info(regexp = "statcast.*\\.rds") |> |
| 109 | +# select(path, size) |> |
| 110 | +# mutate( |
| 111 | +# path = path_file(path), |
| 112 | +# format = "rds" |
| 113 | +# ) |
| 114 | +# |
| 115 | +# disk_space_rds |
| 116 | +``` |
| 117 | + |
| 118 | +## Using Apache Arrow and Apache Parquet |
| 119 | + |
| 120 | +Watch the demo in the video. |
| 121 | + |
| 122 | +## Using DuckDB |
| 123 | + |
| 124 | +Watch the demo in the video. |
| 125 | + |
| 126 | +## Performance Comparison |
| 127 | + |
| 128 | +### Computational speed |
| 129 | + |
| 130 | +```{r computational_speed_results} |
| 131 | +res <- read_rds('./data/res.rds') |
| 132 | +
|
| 133 | +res |> |
| 134 | + select(1:8) |> |
| 135 | + knitr::kable() |
| 136 | +``` |
| 137 | + |
| 138 | +### Memory footprint |
| 139 | + |
| 140 | +```{r memory_footprint} |
| 141 | +# tbl arrow duckdb |
| 142 | +# 2004855136 504 51352 |
| 143 | +``` |
| 144 | + |
| 145 | +### Disk storage footprint |
| 146 | + |
| 147 | +```{r disk_storage_fooprint} |
| 148 | +# A tibble: 3 × 2 |
| 149 | +# format footprint |
| 150 | +# <chr> <fs::bytes> |
| 151 | +# 1 duckdb 1.95G |
| 152 | +# 2 parquet 350.46M |
| 153 | +# 3 rds 211.92M |
| 154 | +``` |
| 155 | + |
| 156 | +### Overall guidelines |
| 157 | + |
| 158 | +- If your data is small (i.e., less than a couple hundred megabytes), just use CSV because it's easy, cross-platform, and versatile. |
| 159 | +- If your data is larger than a couple hundred megabytes and you're just working in R (either by yourself or with a few colleagues), use .rds because it's space-efficient and optimized for R. |
| 160 | +- If your data is around a gigabyte or more and you need to share your data files across different platforms (i.e., not just R but also Python, etc.) and you don't want to use a SQL-based RDBMS, store your data in the Parquet format and use the arrow package. |
| 161 | +- If you want to work in SQL with a local data store, use DuckDB, because it offers more features and better performance than RSQLite, and doesn't require a server-client architecture that can be cumbersome to set up and maintain. |
| 162 | +- If you have access to a RDBMS server (hopefully maintained by a professional database administrator), use the appropriate DBI interface (e.g., RMariaDB, RPostgreSQL, etc.) to connect to it. |
| 163 | + |
| 164 | +## Launch Angles and Exit Velocities, Revisited |
| 165 | + |
| 166 | +Consider what happens when we ask the database to give us all the data for a particular player, say Pete Alonso, in a particular year, say 2021. |
| 167 | + |
| 168 | +```{r pete_alonso_res} |
| 169 | +read_bip_data <- function(tbl, begin, end = begin, |
| 170 | + batter_id = 624413) { |
| 171 | + x <- tbl |> |
| 172 | + mutate(year = year(game_date)) |> |
| 173 | + group_by(year) |> |
| 174 | + filter(type == "X", year >= begin, year <= end) |> |
| 175 | + select( |
| 176 | + year, game_date, batter, launch_speed, launch_angle, |
| 177 | + estimated_ba_using_speedangle, |
| 178 | + estimated_woba_using_speedangle |
| 179 | + ) |
| 180 | + if (!is.null(batter_id)) { |
| 181 | + x <- x |> |
| 182 | + filter(batter == batter_id) |
| 183 | + } |
| 184 | + x |> |
| 185 | + collect() |
| 186 | +} |
| 187 | +
|
| 188 | +pete_alonso_res <- read_rds('./data/pete_alonso_res.rds') |
| 189 | +
|
| 190 | +pete_alonso_res |> |
| 191 | + knitr::kable() |
| 192 | +``` |
| 193 | + |
| 194 | +### Launches angles over time |
| 195 | + |
| 196 | + |
6 | 197 |
|
7 | | -## SLIDE 1 {-} |
| 198 | +## Further reading |
8 | 199 |
|
9 | | -- ADD SLIDES AS SECTIONS (`##`). |
10 | | -- TRY TO KEEP THEM RELATIVELY SLIDE-LIKE; THESE ARE NOTES, NOT THE BOOK ITSELF. |
| 200 | +Wickham, Hadley, Mine Çetinkaya-Rundel, and Garrett Grolemund. 2023. R for Data Science. 2nd ed. Sebastapol, CA: O'Reilly Media, Inc. <https://r4ds.hadley.nz/>. |
0 commit comments