-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfat_equations.tex
81 lines (55 loc) · 2.4 KB
/
fat_equations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
% !TEX TS-program = xelatex
%
% Created by Ryan Batt on 2016-05-23.
% Copyright (c) 2016 .
\documentclass{article}
\usepackage{polyglossia}
\usepackage{hyperref}
\hypersetup
{
pdftitle = {FatEquations},
pdfsubject = {Extremes},
pdfauthor = {Ryan Batt}
}
\title{Equations for Extreme Events in Ecosystem Time Series}
\author{Ryan Batt}
\begin{document}
\maketitle
\begin{abstract}
Abstract
\end{abstract}
\section{Equations}
% GEV CDF
GEV cummulative distribution function:
\[F\left( x;\mu ,\sigma ,\xi \right)=\left\{ \begin{matrix}
\exp \left\{ -{{[1+\xi (x-\mu )/\sigma ]}^{-1/\xi }} \right\} & \xi \ne 0 \\
\exp \left\{ -\exp \left[ -(x-\mu )/\sigma \right] \right\} & \xi =0 \\
\end{matrix} \right.\]
% GEV constraint in-text
$1+\xi (x-\mu )/\sigma >0$
% GEV Support
\[\begin{array}{*{35}{l}}
x\in [\mu -\sigma /\xi ,+\infty ) & when\text{ }\xi >0, \\
x\in (-\infty ,+\infty ) & when\text{ }\xi =0, \\
x\in (-\infty ,\mu -\sigma /\xi ] & when\text{ }\xi <0 \\
\end{array}\]
% Heuristic Population Eq1
\[{{X}_{T}}\left( t+\Delta t \right)=B\left( \varphi \left( t \right),{{X}_{T}} \right)S\left( \gamma \left( t \right),{{X}_{T}} \right){{X}_{T}}\left( t \right)\]
% Heuristic Population, in-text term 1
\[B\left( \varphi \left( t \right),{{X}_{T}} \right)\]
% Heuristic Population, in-text term 2
\[S\left( \gamma \left( t \right),{{X}_{T}} \right)\]
% Heuristic Population Eq2
\[{{X}_{T+1}}={{X}_{T}}\prod\limits_{i=1}^{1/\Delta t}{B\left( \varphi \left( i\Delta t \right),{{X}_{T}} \right)S\left( \gamma \left( i\Delta t \right),{{X}_{T}} \right)}\]
% Heuristic Population Eq3
\[\begin{array}{*{35}{l}}
{{x}_{T+1}} & ={{x}_{T}}+\sum\limits_{i=1}^{1/\Delta t}{\left\{ b\left( \varphi \left( i\Delta t \right),{{x}_{T}} \right)+s\left( \gamma \left( i\Delta t \right),{{x}_{T}} \right) \right\}} \\
{} & ={{x}_{T}}+r\left( T,{{x}_{T}} \right)+\varepsilon \left( T,{{x}_{T}} \right) \\
\end{array}\]
% Heuristic Population in-text term 3 (Fig params part1)
\[B\left( \varphi \right)=\max \left[ 1,{{e}^{-b\left( 1+\varphi \right)}} \right]\]
% Heuristic Population in-text term 4 (Fig params part2)
$S\left( \gamma ,{{X}_{T}} \right)={{\left[ \left( 1+{{e}^{-s\left( 1+\gamma \right)}} \right){{\left( 1+a{{X}_{T}} \right)}^{1/\Delta t}} \right]}^{-1}}$
% ARMA Equation
(x_t - \mu) = \sum_{i=1}^p \varphi_i (x_{t-i} - \mu) + \sum_{j=0}^q \theta_j \epsilon_{t-j}
\end{document}