@@ -99,12 +99,10 @@ From the metadata description, we select the post-stratification weight variable
99
99
100
100
``` {r weightvars}
101
101
weight_variables <- cap_metadata %>%
102
- filter ( .data$var_name_orig %in% c("isocntry", "wex", "wextra", "v47", "v7", "w1") |
103
- .data$var_label_orig %in% c("w_1_weight_result_from_target",
104
- "w_3_weight_special_germany",
105
- "weight_result_from_traget_united_germany",
106
- "w_4_weight_special_united_kingdom",
107
- "weight_result_from_traget_united_kingdom"))
102
+ filter (
103
+ var_name_orig %in% c("isocntry", "wex", "wextra", "v47", "v7", "w1") | var_label_orig %in% c("w_1_weight_result_from_target",
104
+ "w_3_weight_special_germany", "weight_result_from_traget_united_germany", "w_4_weight_special_united_kingdom", "weight_result_from_traget_united_kingdom")
105
+ )
108
106
```
109
107
110
108
A * schema crosswalk* is a table that shows equivalent elements (or "fields") in more than one structured data source. With ` crosswalk_table_create() ` we first create an empty schema crosswalk, then we fill up the empty schema with values. Researchers who feel more comfortable working in a spreadsheet application can create a similar crosswalk table in Excel, Numbers, or OpenOffice, and import the data from a ` csv ` or any tabular file.
@@ -119,14 +117,16 @@ weigthing_crosswalk_table <- crosswalk_table_create(
119
117
# Define the new, harmonized variable names
120
118
var_name_target = case_when (
121
119
# grepl("weight_result_from_target", .data$val_label_target) ~ "w1", [this is the issue]
122
- .data$ var_name_orig %in% c("wex", "wextra", "v47") ~ 'wex',
123
- .data$ var_name_orig %in% c("w1", "v8") ~ "w1",
124
- .data$ var_name_orig %in% c("w3a", "v12") ~ "w_de",
125
- .data$ var_name_orig %in% c("w4a", "v10") ~ "w_uk",
126
- .data$ var_name_orig == "rowid" ~ 'rowid', # do not forget to keep the unique row IDs
120
+ var_name_orig %in% c("wex", "wextra", "v47") ~ 'wex',
121
+ var_name_orig %in% c("w1", "v8") ~ "w1",
122
+ var_name_orig %in% c("w3a", "v12") ~ "w_de",
123
+ var_name_orig %in% c("w4a", "v10") ~ "w_uk",
124
+ var_name_orig == "rowid" ~ 'rowid', # do not forget to keep the unique row IDs
127
125
TRUE ~ "geo"),
128
126
# Define the target R class for working with these variables.
129
- class_target = ifelse(.data$var_name_target %in% c("geo", "v47"), "factor", "numeric")
127
+ class_target = ifelse(var_name_target %in% c("geo", "v47"),
128
+ yes = "factor",
129
+ no = "numeric")
130
130
) %>%
131
131
select (
132
132
-all_of(c("val_numeric_orig", "val_numeric_target", "val_label_orig", "val_label_target"))
@@ -164,8 +164,8 @@ weight_vars <- weight_vars %>%
164
164
country_code == "GB" ~ w_uk, # UK = Great Britain + Northern Ireland
165
165
TRUE ~ w1 )) %>%
166
166
mutate (year_survey = case_when(
167
- .data$ id == "ZA4529_v3-0-1" ~ '2007',
168
- .data$ id == "ZA5688_v6-0-0" ~ '2013'
167
+ id == "ZA4529_v3-0-1" ~ '2007',
168
+ id == "ZA5688_v6-0-0" ~ '2013'
169
169
)) %>%
170
170
mutate (year_survey = as.factor(.data$year_survey))
171
171
```
@@ -174,7 +174,8 @@ weight_vars <- weight_vars %>%
174
174
175
175
``` {r printweigthvars}
176
176
weight_vars <- weight_vars %>%
177
- select ( all_of(c("rowid", "country_code", "geo", "w", "w1", "wex", "id")) )
177
+ select ( all_of(c("rowid", "country_code", "geo",
178
+ "w", "w1", "wex", "id")) )
178
179
set.seed(2022)
179
180
weight_vars %>% sample_n(6)
180
181
```
0 commit comments