|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 21, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "#!pip install pinecone-client\n", |
| 10 | + "#!pip install llama-index-llms-gemini\n", |
| 11 | + "#!pip install llama-index-vector-stores-pinecone\n", |
| 12 | + "#!pip install llama-index\n", |
| 13 | + "#!pip install llama-index-embeddings-gemini" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "markdown", |
| 18 | + "metadata": {}, |
| 19 | + "source": [ |
| 20 | + "Step 1: Import libraries and define API keys\n", |
| 21 | + "We'll need to import a few libraries and take care of some basics." |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 7, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "import os\n", |
| 31 | + "from pinecone import Pinecone\n", |
| 32 | + "from llama_index.llms.gemini import Gemini\n", |
| 33 | + "from llama_index.vector_stores.pinecone import PineconeVectorStore\n", |
| 34 | + "from llama_index.core import StorageContext\n", |
| 35 | + "from llama_index.embeddings.gemini import GeminiEmbedding\n", |
| 36 | + "from llama_index.core import ServiceContext, VectorStoreIndex, SimpleDirectoryReader, download_loader, set_global_service_context\n", |
| 37 | + "from llama_index.core import Settings" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "markdown", |
| 42 | + "metadata": {}, |
| 43 | + "source": [ |
| 44 | + "Set API keys and set Gemini as llm" |
| 45 | + ] |
| 46 | + }, |
| 47 | + { |
| 48 | + "cell_type": "code", |
| 49 | + "execution_count": 2, |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [], |
| 52 | + "source": [ |
| 53 | + "GOOGLE_API_KEY = \"AIzaSyDEvLkqFWDGcNEdfej5nGtGk_gqELwini4\"\n", |
| 54 | + "PINECONE_API_KEY = \"953c33e9-4c8e-4c61-868a-64b246640ef4\"" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 3, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "os.environ[\"GOOGLE_API_KEY\"] = GOOGLE_API_KEY\n", |
| 64 | + "os.environ[\"PINECONE_API_KEY\"] = PINECONE_API_KEY" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": 4, |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "# set llm as Gemini Pro\n", |
| 74 | + "llm = Gemini()" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "markdown", |
| 79 | + "metadata": {}, |
| 80 | + "source": [ |
| 81 | + "Step 2: Create a Pinecone client\n", |
| 82 | + "To send data back and forth between the app and Pinecone, we'll need to instantiate a Pinecone client. It's a one-liner:" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 22, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "#pinecone_client = Pinecone(api_key=os.environ[\"PINECONE_API_KEY\"])\n", |
| 92 | + "pinecone_client = Pinecone(api_key=PINECONE_API_KEY)" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "cell_type": "code", |
| 97 | + "execution_count": 6, |
| 98 | + "metadata": {}, |
| 99 | + "outputs": [ |
| 100 | + { |
| 101 | + "name": "stdout", |
| 102 | + "output_type": "stream", |
| 103 | + "text": [ |
| 104 | + "testindex\n" |
| 105 | + ] |
| 106 | + } |
| 107 | + ], |
| 108 | + "source": [ |
| 109 | + "# list pinecone indexes\n", |
| 110 | + "for index in pinecone_client.list_indexes():\n", |
| 111 | + " print(index['name'])" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "Step 3: Select the Pinecone index\n", |
| 119 | + "Using our Pinecone client, we can select the Index that we previously created and assign it to the variable pinecone_index:" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": 8, |
| 125 | + "metadata": {}, |
| 126 | + "outputs": [], |
| 127 | + "source": [ |
| 128 | + "pinecone_index = pinecone_client.Index(\"testindex\")" |
| 129 | + ] |
| 130 | + }, |
| 131 | + { |
| 132 | + "cell_type": "markdown", |
| 133 | + "metadata": {}, |
| 134 | + "source": [ |
| 135 | + "Step 4: Call the documents" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "code", |
| 140 | + "execution_count": 23, |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "documents = SimpleDirectoryReader(\"data\").load_data()" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "markdown", |
| 149 | + "metadata": {}, |
| 150 | + "source": [] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "markdown", |
| 154 | + "metadata": {}, |
| 155 | + "source": [ |
| 156 | + "Step 5: Generate embeddings using GeminiEmbedding\n", |
| 157 | + "\n", |
| 158 | + "By default, LlamaIndex assumes you are using OpenAI to generate embeddings.\n", |
| 159 | + "To configure it to use Gemini instead, we need to set up the service context which lets LlamaIndex know which llm and which embedding model to use." |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": 12, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "embed_model = GeminiEmbedding(model_name=\"models/embedding-001\")\n", |
| 169 | + "\n", |
| 170 | + "Settings.llm = llm\n", |
| 171 | + "Settings.embed_model = embed_model\n", |
| 172 | + "Settings.chunk_size = 512" |
| 173 | + ] |
| 174 | + }, |
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "metadata": {}, |
| 178 | + "source": [ |
| 179 | + "Step 6: Generate and store embeddings in the Pinecone index\n", |
| 180 | + "Using the VectorStoreIndex class, LlamaIndex takes care of sending the data chunks to the embedding model and then handles storing the vectorized data into the Pinecone index." |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 16, |
| 186 | + "metadata": {}, |
| 187 | + "outputs": [ |
| 188 | + { |
| 189 | + "name": "stderr", |
| 190 | + "output_type": "stream", |
| 191 | + "text": [ |
| 192 | + "Upserted vectors: 100%|██████████| 32/32 [00:01<00:00, 26.58it/s]\n" |
| 193 | + ] |
| 194 | + } |
| 195 | + ], |
| 196 | + "source": [ |
| 197 | + "# store embeddings in pinecone index\n", |
| 198 | + "vector_store = PineconeVectorStore(pinecone_index=pinecone_index)\n", |
| 199 | + "\n", |
| 200 | + "# Create a StorageContext using the created PineconeVectorStore\n", |
| 201 | + "storage_context = StorageContext.from_defaults(\n", |
| 202 | + " vector_store=vector_store\n", |
| 203 | + ")\n", |
| 204 | + "\n", |
| 205 | + "# Use the chunks of documents and the storage_context to create the index\n", |
| 206 | + "index = VectorStoreIndex.from_documents(\n", |
| 207 | + " documents, \n", |
| 208 | + " storage_context=storage_context\n", |
| 209 | + ")" |
| 210 | + ] |
| 211 | + }, |
| 212 | + { |
| 213 | + "cell_type": "markdown", |
| 214 | + "metadata": {}, |
| 215 | + "source": [ |
| 216 | + "Step 7: Query Pinecone vector store\n", |
| 217 | + "\n", |
| 218 | + "Now the contents of the URL are converted to embeddings and stored in the Pinecone index.\n", |
| 219 | + "Let's perform a similarity search by querying the index" |
| 220 | + ] |
| 221 | + }, |
| 222 | + { |
| 223 | + "cell_type": "code", |
| 224 | + "execution_count": 18, |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [], |
| 227 | + "source": [ |
| 228 | + "# query pinecone index for similar embeddings\n", |
| 229 | + "query_engine = index.as_query_engine()" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "code", |
| 234 | + "execution_count": 19, |
| 235 | + "metadata": {}, |
| 236 | + "outputs": [], |
| 237 | + "source": [ |
| 238 | + "gemini_response = query_engine.query(\"What are the plans covered under Rooftop solarization and muft bijli?\")" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 20, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stdout", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "Through rooftop solarization, one crore households will be enabled to obtain up to 300 units free electricity every month.\n" |
| 251 | + ] |
| 252 | + } |
| 253 | + ], |
| 254 | + "source": [ |
| 255 | + "# print response\n", |
| 256 | + "print(gemini_response)" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "metadata": {}, |
| 263 | + "outputs": [], |
| 264 | + "source": [] |
| 265 | + } |
| 266 | + ], |
| 267 | + "metadata": { |
| 268 | + "kernelspec": { |
| 269 | + "display_name": "Python 3", |
| 270 | + "language": "python", |
| 271 | + "name": "python3" |
| 272 | + }, |
| 273 | + "language_info": { |
| 274 | + "codemirror_mode": { |
| 275 | + "name": "ipython", |
| 276 | + "version": 3 |
| 277 | + }, |
| 278 | + "file_extension": ".py", |
| 279 | + "mimetype": "text/x-python", |
| 280 | + "name": "python", |
| 281 | + "nbconvert_exporter": "python", |
| 282 | + "pygments_lexer": "ipython3", |
| 283 | + "version": "3.11.0" |
| 284 | + } |
| 285 | + }, |
| 286 | + "nbformat": 4, |
| 287 | + "nbformat_minor": 2 |
| 288 | +} |
0 commit comments