|
1 | 1 | Metadata-Version: 2.1 |
2 | 2 | Name: paste-bio |
3 | | -Version: 1.0.1 |
| 3 | +Version: 1.0.2 |
4 | 4 | Summary: A computational method to align and integrate spatial transcriptomics experiments. |
5 | 5 | Home-page: https://github.com/raphael-group/paste |
6 | 6 | Author: Max Land |
7 | 7 | |
8 | 8 | License: UNKNOWN |
9 | 9 | Project-URL: Bug Tracker, https://github.com/raphael-group/paste/issues |
10 | | -Description: # PASTE |
11 | | - |
12 | | - PASTE is a computational method that leverages both gene expression similarity and spatial distances between spots align and integrate spatial transcriptomics data. In particular, there are two methods: |
13 | | - 1. `pairwise_align`: align spots across pairwise ST layers. |
14 | | - 2. `center_align`: integrate multiple ST layers into one center layer. |
15 | | - |
16 | | - You can read our preprint [here](https://www.biorxiv.org/content/10.1101/2021.03.16.435604v1). |
17 | | - |
18 | | - PASTE is actively being worked on with future updates coming. |
19 | | - |
20 | | - ### Dependencies |
21 | | - |
22 | | - To run PASTE, you will need the following Python packages: |
23 | | - 1. POT: Python Optimal Transport (https://PythonOT.github.io/) |
24 | | - 2. NetworkX (https://networkx.org/) |
25 | | - 3. Numpy |
26 | | - 4. Pandas |
27 | | - 5. scipy.spatial |
28 | | - 6. sklearn.preprocessing |
29 | | - |
30 | | - ### Installation |
31 | | - |
32 | | - The easiest way is to install PASTE on pypi: https://pypi.org/project/paste-bio/. |
33 | | - |
34 | | - `pip install paste-bio` |
35 | | - |
36 | | - Check out Tutorial.ipynb for an example of how to use PASTE. |
37 | | - |
38 | | - Or you can clone the respository and run from command line (see below). |
39 | | - |
40 | | - |
41 | | - ### Command Line |
42 | | - |
43 | | - We provide the option of running PASTE from the command line. |
44 | | - |
45 | | - First, clone the repository: |
46 | | - |
47 | | - `git clone https://github.com/raphael-group/paste.git` |
48 | | - |
49 | | - Sample execution: `python paste-cmd-line.py -m pairwise -f file1.csv file2.csv file3.csv` |
50 | | - |
51 | | - Note: `pairwise` will return pairwise alignment between each consecutive pair of files (e.g. \[file1,file2\], \[file2,file3\]). |
52 | | - |
53 | | - | Flag | Name | Description | Default Value | |
54 | | - | --- | --- | --- | --- | |
55 | | - | -m | mode | Select either `pairwise` or `center` | (str) `pairwise` | |
56 | | - | -f | files | Path to data files (.csv) | None | |
57 | | - | -d | direc | Directory to store output files | Current Directory | |
58 | | - | -a | alpha | alpha parameter for PASTE | (float) `0.1` | |
59 | | - | -p | n_components | n_components for NMF step in `center_align` | (int) `15` | |
60 | | - | -l | lmbda | lambda parameter in `center_align` | (floats) probability vector of length `n` | |
61 | | - | -i | intial_layer | Specify which file is also the intial layer in `center_align` | (int) `1` | |
62 | | - | -t | threshold | Convergence threshold for `center_align` | (float) `0.001` | |
63 | | - |
64 | | - Input files are .csv files of the form: |
65 | | - |
66 | | - ``` |
67 | | - 'gene_a' 'gene_b' |
68 | | - '2x5' 0 9 |
69 | | - '2x7' 2 6 |
70 | | - ``` |
71 | | - Where the columns indexes are gene names (str), row indexes are spatial coordinates (str), and entries are gene counts (int). In particular, row indexes are of the form `AxB` where `A` and `B` are floats. |
72 | | - |
73 | | - `pairwise_align` outputs a (.csv) file containing mapping of spots between each consecutive pair of layers. The rows correspond to spots of the first layer, and cols the second. |
74 | | - |
75 | | - `center_align` outputs two files containing the low dimensional representation (NMF decomposition) of the center layer gene expression, and files containing a mapping of spots between the center layer (rows) to each input layer (cols). |
76 | | - |
77 | | - ### Sample Dataset |
78 | | - |
79 | | - Added sample spatial transcriptomics dataset consisting of four breast cancer layers courtesy of: |
80 | | - |
81 | | - Ståhl, Patrik & Salmén, Fredrik & Vickovic, Sanja & Lundmark, Anna & Fernandez Navarro, Jose & Magnusson, Jens & Giacomello, Stefania & Asp, Michaela & Westholm, Jakub & Huss, Mikael & Mollbrink, Annelie & Linnarsson, Sten & Codeluppi, Simone & Borg, Åke & Pontén, Fredrik & Costea, Paul & Sahlén, Pelin Akan & Mulder, Jan & Bergmann, Olaf & Frisén, Jonas. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 353. 78-82. 10.1126/science.aaf2403. |
82 | | - |
83 | | - Note: Original data is (.tsv), but we converted it to (.csv). |
84 | | - |
85 | 10 | Platform: UNKNOWN |
86 | 11 | Classifier: Programming Language :: Python :: 3 |
87 | 12 | Classifier: License :: OSI Approved :: BSD License |
88 | 13 | Classifier: Operating System :: OS Independent |
89 | 14 | Requires-Python: >=3.6 |
90 | 15 | Description-Content-Type: text/markdown |
| 16 | +License-File: LICENSE |
| 17 | + |
| 18 | +# PASTE |
| 19 | + |
| 20 | +PASTE is a computational method that leverages both gene expression similarity and spatial distances between spots align and integrate spatial transcriptomics data. In particular, there are two methods: |
| 21 | +1. `pairwise_align`: align spots across pairwise ST layers. |
| 22 | +2. `center_align`: integrate multiple ST layers into one center layer. |
| 23 | + |
| 24 | +You can read our preprint [here](https://www.biorxiv.org/content/10.1101/2021.03.16.435604v1). |
| 25 | + |
| 26 | +PASTE is actively being worked on with future updates coming. |
| 27 | + |
| 28 | +### Dependencies |
| 29 | + |
| 30 | +To run PASTE, you will need the following Python packages: |
| 31 | +1. POT: Python Optimal Transport (https://PythonOT.github.io/) |
| 32 | +3. Numpy |
| 33 | +4. Pandas |
| 34 | +5. scipy.spatial |
| 35 | +6. sklearn.preprocessing |
| 36 | + |
| 37 | +### Installation |
| 38 | + |
| 39 | +The easiest way is to install PASTE on pypi: https://pypi.org/project/paste-bio/. |
| 40 | + |
| 41 | +`pip install paste-bio` |
| 42 | + |
| 43 | +Check out Tutorial.ipynb for an example of how to use PASTE. |
| 44 | + |
| 45 | +Or you can clone the respository and run from command line (see below). |
| 46 | + |
| 47 | + |
| 48 | +### Command Line |
| 49 | + |
| 50 | +We provide the option of running PASTE from the command line. |
| 51 | + |
| 52 | +First, clone the repository: |
| 53 | + |
| 54 | +`git clone https://github.com/raphael-group/paste.git` |
| 55 | + |
| 56 | +Sample execution: `python paste-cmd-line.py -m pairwise -f file1.csv file2.csv file3.csv` |
| 57 | + |
| 58 | +Note: `pairwise` will return pairwise alignment between each consecutive pair of files (e.g. \[file1,file2\], \[file2,file3\]). |
| 59 | + |
| 60 | +| Flag | Name | Description | Default Value | |
| 61 | +| --- | --- | --- | --- | |
| 62 | +| -m | mode | Select either `pairwise` or `center` | (str) `pairwise` | |
| 63 | +| -f | files | Path to data files (.csv) | None | |
| 64 | +| -d | direc | Directory to store output files | Current Directory | |
| 65 | +| -a | alpha | alpha parameter for PASTE | (float) `0.1` | |
| 66 | +| -p | n_components | n_components for NMF step in `center_align` | (int) `15` | |
| 67 | +| -l | lmbda | lambda parameter in `center_align` | (floats) probability vector of length `n` | |
| 68 | +| -i | intial_layer | Specify which file is also the intial layer in `center_align` | (int) `1` | |
| 69 | +| -t | threshold | Convergence threshold for `center_align` | (float) `0.001` | |
| 70 | + |
| 71 | +Input files are .csv files of the form: |
| 72 | + |
| 73 | +``` |
| 74 | + 'gene_a' 'gene_b' |
| 75 | +'2x5' 0 9 |
| 76 | +'2x7' 2 6 |
| 77 | +``` |
| 78 | +Where the columns indexes are gene names (str), row indexes are spatial coordinates (str), and entries are gene counts (int). In particular, row indexes are of the form `AxB` where `A` and `B` are floats. |
| 79 | + |
| 80 | +`pairwise_align` outputs a (.csv) file containing mapping of spots between each consecutive pair of layers. The rows correspond to spots of the first layer, and cols the second. |
| 81 | + |
| 82 | +`center_align` outputs two files containing the low dimensional representation (NMF decomposition) of the center layer gene expression, and files containing a mapping of spots between the center layer (rows) to each input layer (cols). |
| 83 | + |
| 84 | +### Sample Dataset |
| 85 | + |
| 86 | +Added sample spatial transcriptomics dataset consisting of four breast cancer layers courtesy of: |
| 87 | + |
| 88 | +Ståhl, Patrik & Salmén, Fredrik & Vickovic, Sanja & Lundmark, Anna & Fernandez Navarro, Jose & Magnusson, Jens & Giacomello, Stefania & Asp, Michaela & Westholm, Jakub & Huss, Mikael & Mollbrink, Annelie & Linnarsson, Sten & Codeluppi, Simone & Borg, Åke & Pontén, Fredrik & Costea, Paul & Sahlén, Pelin Akan & Mulder, Jan & Bergmann, Olaf & Frisén, Jonas. (2016). Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 353. 78-82. 10.1126/science.aaf2403. |
| 89 | + |
| 90 | +Note: Original data is (.tsv), but we converted it to (.csv). |
| 91 | + |
| 92 | + |
0 commit comments