Skip to content

Releases: rapidsai/cuml

v21.10.01

10 Nov 15:40
Compare
Choose a tag to compare

v21.10.01

v21.08.03

08 Nov 18:17
Compare
Choose a tag to compare

v21.08.03

v21.10.00

06 Oct 19:04
Compare
Choose a tag to compare

🚨 Breaking Changes

🐛 Bug Fixes

📖 Documentation

🚀 New Features

  • Experimental option to build libcuml++ only with FIL (#4225) @dantegd
  • FIL to import categorical models from treelite (#4173) @levsnv
  • Add hamming, jensen-shannon, kl-divergence, correlation and russellrao distance metrics (#4155) @mdoijade
  • Add Categorical Naive Bayes (#4150) @lowener
  • FIL to infer categorical forests and generate them in C++ tests (#4092) @levsnv
  • Add Gaussian Naive Bayes (#4079) @lowener
  • ARIMA - Add support for missing observations and padding (#4058) @Nyrio

🛠️ Improvements

v21.08.02

16 Sep 19:17
Compare
Choose a tag to compare

v21.08.02

v21.08.01

06 Aug 20:27
Compare
Choose a tag to compare

v21.08.01

v21.08.00

04 Aug 18:50
Compare
Choose a tag to compare

🚨 Breaking Changes

🐛 Bug Fixes

📖 Documentation

🚀 New Features

  • Add Multinomial and Bernoulli Naive Bayes variants (#4053) @lowener
  • Add weighted K-Means sampling for SHAP (#4051) @Nanthini10
  • Use chebyshev, canberra, hellinger and minkowski distance metrics (#3990) @mdoijade
  • Implement vector leaf prediction for fil. (#3917) @RAMitchell
  • change TargetEncoder's smooth argument from ratio to count (#3876) @daxiongshu
  • Enable warp-per-tree inference in FIL for regression and binary classification (#3760) @levsnv

🛠️ Improvements

v21.06.02

17 Jun 15:17
Compare
Choose a tag to compare
Release v21.06.02

v21.06.01

10 Jun 19:39
Compare
Choose a tag to compare
Release v21.06.01

v21.06.00

09 Jun 21:01
Compare
Choose a tag to compare

🚨 Breaking Changes

  • Remove Base.enable_rmm_pool method as it is no longer needed (#3875) @teju85
  • RF: Make experimental-backend default for regression tasks and deprecate old-backend. (#3872) @venkywonka
  • Deterministic UMAP with floating point rounding. (#3848) @trivialfis
  • Fix RF regression performance (#3845) @RAMitchell
  • Add feature to print forest shape in FIL upon importing (#3763) @levsnv
  • Remove 'seed' and 'output_type' deprecated features (#3739) @lowener

🐛 Bug Fixes

  • Disable UMAP deterministic test on CTK11.2 (#3942) @trivialfis
  • Revert #3869 (#3933) @hcho3
  • RF: fix the bug in pdf_to_cdf device function that causes hang when n_bins > TPB && n_bins % TPB != 0 (#3921) @venkywonka
  • Fix number of permutations in pytest and getting handle for cuml models (#3920) @dantegd
  • Fix typo in umap target_weight parameter (#3914) @lowener
  • correct compliation of cuml c library (#3908) @robertmaynard
  • Correct install path for include folder to avoid double nesting (#3901) @dantegd
  • Add type check for y in train_test_split (#3886) @Nanthini10
  • Fix for MNMG test_rf_classification_dask_fil_predict_proba (#3831) @lowener
  • Fix MNMG test test_rf_regression_dask_fil (#3830) @hcho3
  • AgglomerativeClustering support single cluster and ignore only zero distances from self-loops (#3824) @cjnolet

📖 Documentation

  • Small doc fixes for 21.06 release (#3936) @dantegd
  • Document ability to export cuML RF to predict on other machines (#3890) @hcho3

🚀 New Features

🛠️ Improvements

v0.19.0

21 Apr 19:48
Compare
Choose a tag to compare

🚨 Breaking Changes

  • Use the new RF backend by default for classification (#3686) @hcho3
  • Deprecating quantile-per-tree and removing three previously deprecated Random Forest parameters (#3667) @vinaydes
  • Update predict() / predict_proba() of RF to match sklearn (#3609) @hcho3
  • Upgrade FAISS to 1.7.x (#3509) @viclafargue
  • cuML's estimator Base class for preprocessing models (#3270) @viclafargue

🐛 Bug Fixes

📖 Documentation

🚀 New Features

🛠️ Improvements