Skip to content

Commit 557be62

Browse files
Fixed deployment options in Compute Engine and cluster credentials in… (#544)
* Fixed deployment options in Compute Engine and cluster credentials in GKE * fixed extra spacing
1 parent 83a5062 commit 557be62

File tree

3 files changed

+12
-2
lines changed

3 files changed

+12
-2
lines changed

source/cloud/aws/sagemaker.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ set -e
4141

4242
sudo -u ec2-user -i <<'EOF'
4343
44-
mamba create -y -n rapids {{ rapids_conda_channels }} {{ rapids_sagemaker_conda_packages }} \
44+
mamba create -y -n rapids -c rapidsai -c conda-forge -c nvidia rapids=24.12 python=3.12 cuda-version=12.4 \
4545
boto3 \
4646
ipykernel \
4747
'sagemaker-python-sdk>=2.239.0'

source/cloud/gcp/compute-engine.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@ NVIDIA maintains a [Virtual Machine Image (VMI) that pre-installs NVIDIA drivers
1212

1313
1. Open [**Compute Engine**](https://console.cloud.google.com/compute/instances).
1414
1. Select **Create Instance**.
15+
1. Select the **Create VM from..** option at the top.
1516
1. Select **Marketplace**.
1617
1. Search for "nvidia" and select **NVIDIA GPU-Optimized VMI**, then select **Launch**.
1718
1. In the **New NVIDIA GPU-Optimized VMI deployment** interface, fill in the name and any required information for the vm (the defaults should be fine for most users).
@@ -29,7 +30,7 @@ To access Jupyter and Dask we will need to set up some firewall rules to open up
2930
3. Give the rule a name like `rapids` and ensure the network matches the one you selected for the VM.
3031
4. Add a tag like `rapids` which we will use to assign the rule to our VM.
3132
5. Set your source IP range. We recommend you restrict this to your own IP address or your corporate network rather than `0.0.0.0/0` which will allow anyone to access your VM.
32-
6. Under **Protocols and ports** allow TCP connections on ports `8786,8787,8888`.
33+
6. Under **Protocols and ports** allow TCP connections on ports `22,8786,8787,8888`.
3334

3435
### Assign it to the VM
3536

source/cloud/gcp/gke.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -30,6 +30,15 @@ gcloud container clusters create rapids-gpu-kubeflow \
3030

3131
With this command, you’ve launched a GKE cluster called `rapids-gpu-kubeflow`. You’ve specified that it should use nodes of type a2-highgpu-2g, each with two A100 GPUs.
3232

33+
## Get the cluster credentials
34+
35+
```console
36+
gcloud container clusters get-credentials rapids-gpu-kubeflow \
37+
--region=us-central1-c
38+
```
39+
40+
With this command, your `kubeconfig` is updated with credentials and endpoint information for the `rapids-gpu-kubeflow` cluster.
41+
3342
## Install drivers
3443

3544
Next, [install the NVIDIA drivers](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus#installing_drivers) onto each node.

0 commit comments

Comments
 (0)