|
| 1 | +# This file collects all the relevant code that we covered thus far |
| 2 | +# throughout Chapters 3-4. |
| 3 | +# This file can be run as a standalone script. |
| 4 | + |
| 5 | +import time |
| 6 | +import tiktoken |
| 7 | +import torch |
| 8 | +import torch.nn as nn |
| 9 | + |
| 10 | + |
| 11 | +##################################### |
| 12 | +# Chapter 3 |
| 13 | +##################################### |
| 14 | +class MultiHeadAttention(nn.Module): |
| 15 | + def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False, max_seq_len=None, window_size=None): |
| 16 | + super().__init__() |
| 17 | + assert d_out % num_heads == 0, "d_out must be divisible by num_heads" |
| 18 | + |
| 19 | + self.d_out = d_out |
| 20 | + self.num_heads = num_heads |
| 21 | + self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim |
| 22 | + |
| 23 | + self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias) |
| 24 | + self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias) |
| 25 | + self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias) |
| 26 | + self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs |
| 27 | + self.dropout = nn.Dropout(dropout) |
| 28 | + |
| 29 | + #################################################### |
| 30 | + # NEW |
| 31 | + self.max_seq_len = max_seq_len or context_length |
| 32 | + self.window_size = window_size or self.max_seq_len |
| 33 | + self.register_buffer("cache_k", None, persistent=False) |
| 34 | + self.register_buffer("cache_v", None, persistent=False) |
| 35 | + #################################################### |
| 36 | + |
| 37 | + def forward(self, x, use_cache=False): |
| 38 | + b, num_tokens, d_in = x.shape |
| 39 | + |
| 40 | + keys_new = self.W_key(x) # Shape: (b, num_tokens, d_out) |
| 41 | + values_new = self.W_value(x) |
| 42 | + queries = self.W_query(x) |
| 43 | + |
| 44 | + # We implicitly split the matrix by adding a `num_heads` dimension |
| 45 | + # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim) |
| 46 | + keys_new = keys_new.view(b, num_tokens, self.num_heads, self.head_dim) |
| 47 | + values_new = values_new.view(b, num_tokens, self.num_heads, self.head_dim) |
| 48 | + queries = queries.view(b, num_tokens, self.num_heads, self.head_dim) |
| 49 | + |
| 50 | + # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim) |
| 51 | + keys_new = keys_new.transpose(1, 2) |
| 52 | + values_new = values_new.transpose(1, 2) |
| 53 | + queries = queries.transpose(1, 2) |
| 54 | + |
| 55 | + #################################################### |
| 56 | + # NEW |
| 57 | + if use_cache: |
| 58 | + if self.cache_k is None or self.cache_k.size(0) != b: |
| 59 | + self.cache_k = torch.zeros(b, self.num_heads, self.max_seq_len, self.head_dim, device=x.device) |
| 60 | + self.cache_v = torch.zeros(b, self.num_heads, self.max_seq_len, self.head_dim, device=x.device) |
| 61 | + self.current_pos = 0 |
| 62 | + |
| 63 | + # write new entries |
| 64 | + start = self.current_pos |
| 65 | + end = start + num_tokens |
| 66 | + self.cache_k[:, :, start:end, :] = keys_new |
| 67 | + self.cache_v[:, :, start:end, :] = values_new |
| 68 | + self.current_pos = end |
| 69 | + |
| 70 | + # sliding window truncation |
| 71 | + if self.current_pos > self.window_size: |
| 72 | + self.cache_k = self.cache_k[:, :, -self.window_size:, :] |
| 73 | + self.cache_v = self.cache_v[:, :, -self.window_size:, :] |
| 74 | + self.current_pos = self.window_size |
| 75 | + |
| 76 | + keys = self.cache_k[:, :, :self.current_pos, :] |
| 77 | + values = self.cache_v[:, :, :self.current_pos, :] |
| 78 | + else: |
| 79 | + keys = keys_new |
| 80 | + values = values_new |
| 81 | + #################################################### |
| 82 | + |
| 83 | + |
| 84 | + # Compute scaled dot-product attention (aka self-attention) with a causal mask |
| 85 | + attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head |
| 86 | + |
| 87 | + #################################################### |
| 88 | + # NEW |
| 89 | + K = attn_scores.size(-1) |
| 90 | + |
| 91 | + if num_tokens == K: |
| 92 | + # No cache → use the pre‑baked triangular mask slice |
| 93 | + causal_mask = torch.triu(torch.ones(num_tokens, K, device=x.device, dtype=torch.bool), diagonal=1) |
| 94 | + else: |
| 95 | + # Cached: need to offset the diagonal by (K − num_tokens) |
| 96 | + offset = K - num_tokens # number of tokens already in cache before this chunk |
| 97 | + row_idx = torch.arange(num_tokens, device=x.device).unsqueeze(1) # (num_tokens, 1) |
| 98 | + col_idx = torch.arange(K, device=x.device).unsqueeze(0) # (1, K) |
| 99 | + causal_mask = row_idx + offset < col_idx # True where j > i+offset |
| 100 | + #################################################### |
| 101 | + |
| 102 | + # Use the mask to fill attention scores |
| 103 | + attn_scores.masked_fill_(causal_mask.unsqueeze(0).unsqueeze(0), -torch.inf) |
| 104 | + |
| 105 | + attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1) |
| 106 | + attn_weights = self.dropout(attn_weights) |
| 107 | + |
| 108 | + # Shape: (b, num_tokens, num_heads, head_dim) |
| 109 | + context_vec = (attn_weights @ values).transpose(1, 2) |
| 110 | + |
| 111 | + # Combine heads, where self.d_out = self.num_heads * self.head_dim |
| 112 | + context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out) |
| 113 | + context_vec = self.out_proj(context_vec) # optional projection |
| 114 | + |
| 115 | + return context_vec |
| 116 | + |
| 117 | + #################################################### |
| 118 | + # NEW |
| 119 | + def reset_cache(self): |
| 120 | + self.cache_k, self.cache_v = None, None |
| 121 | + #################################################### |
| 122 | + |
| 123 | + |
| 124 | +##################################### |
| 125 | +# Chapter 4 |
| 126 | +##################################### |
| 127 | +class LayerNorm(nn.Module): |
| 128 | + def __init__(self, emb_dim): |
| 129 | + super().__init__() |
| 130 | + self.eps = 1e-5 |
| 131 | + self.scale = nn.Parameter(torch.ones(emb_dim)) |
| 132 | + self.shift = nn.Parameter(torch.zeros(emb_dim)) |
| 133 | + |
| 134 | + def forward(self, x): |
| 135 | + mean = x.mean(dim=-1, keepdim=True) |
| 136 | + var = x.var(dim=-1, keepdim=True, unbiased=False) |
| 137 | + norm_x = (x - mean) / torch.sqrt(var + self.eps) |
| 138 | + return self.scale * norm_x + self.shift |
| 139 | + |
| 140 | + |
| 141 | +class GELU(nn.Module): |
| 142 | + def __init__(self): |
| 143 | + super().__init__() |
| 144 | + |
| 145 | + def forward(self, x): |
| 146 | + return 0.5 * x * (1 + torch.tanh( |
| 147 | + torch.sqrt(torch.tensor(2.0 / torch.pi)) * |
| 148 | + (x + 0.044715 * torch.pow(x, 3)) |
| 149 | + )) |
| 150 | + |
| 151 | + |
| 152 | +class FeedForward(nn.Module): |
| 153 | + def __init__(self, cfg): |
| 154 | + super().__init__() |
| 155 | + self.layers = nn.Sequential( |
| 156 | + nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]), |
| 157 | + GELU(), |
| 158 | + nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]), |
| 159 | + ) |
| 160 | + |
| 161 | + def forward(self, x): |
| 162 | + return self.layers(x) |
| 163 | + |
| 164 | + |
| 165 | +class TransformerBlock(nn.Module): |
| 166 | + def __init__(self, cfg): |
| 167 | + super().__init__() |
| 168 | + self.att = MultiHeadAttention( |
| 169 | + d_in=cfg["emb_dim"], |
| 170 | + d_out=cfg["emb_dim"], |
| 171 | + context_length=cfg["context_length"], |
| 172 | + num_heads=cfg["n_heads"], |
| 173 | + dropout=cfg["drop_rate"], |
| 174 | + qkv_bias=cfg["qkv_bias"], |
| 175 | + window_size=cfg["kv_window_size"]) # NEW |
| 176 | + self.ff = FeedForward(cfg) |
| 177 | + self.norm1 = LayerNorm(cfg["emb_dim"]) |
| 178 | + self.norm2 = LayerNorm(cfg["emb_dim"]) |
| 179 | + self.drop_shortcut = nn.Dropout(cfg["drop_rate"]) |
| 180 | + |
| 181 | + def forward(self, x, use_cache=False): |
| 182 | + # Shortcut connection for attention block |
| 183 | + shortcut = x |
| 184 | + x = self.norm1(x) |
| 185 | + |
| 186 | + # x = self.att(x) # Shape [batch_size, num_tokens, emb_size] |
| 187 | + #################################################### |
| 188 | + # NEW |
| 189 | + x = self.att(x, use_cache=use_cache) |
| 190 | + #################################################### |
| 191 | + |
| 192 | + x = self.drop_shortcut(x) |
| 193 | + x = x + shortcut # Add the original input back |
| 194 | + |
| 195 | + # Shortcut connection for feed-forward block |
| 196 | + shortcut = x |
| 197 | + x = self.norm2(x) |
| 198 | + x = self.ff(x) |
| 199 | + x = self.drop_shortcut(x) |
| 200 | + x = x + shortcut # Add the original input back |
| 201 | + |
| 202 | + return x |
| 203 | + |
| 204 | + |
| 205 | +class GPTModel(nn.Module): |
| 206 | + def __init__(self, cfg): |
| 207 | + super().__init__() |
| 208 | + self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"]) |
| 209 | + self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"]) |
| 210 | + self.drop_emb = nn.Dropout(cfg["drop_rate"]) |
| 211 | + |
| 212 | + # self.trf_blocks = nn.Sequential( |
| 213 | + # *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) |
| 214 | + #################################################### |
| 215 | + # NEW |
| 216 | + self.trf_blocks = nn.ModuleList( |
| 217 | + [TransformerBlock(cfg) for _ in range(cfg["n_layers"])]) |
| 218 | + |
| 219 | + self.current_pos = 0 |
| 220 | + #################################################### |
| 221 | + |
| 222 | + self.final_norm = LayerNorm(cfg["emb_dim"]) |
| 223 | + self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False) |
| 224 | + |
| 225 | + def forward(self, in_idx, use_cache=False): |
| 226 | + batch_size, seq_len = in_idx.shape |
| 227 | + tok_embeds = self.tok_emb(in_idx) |
| 228 | + |
| 229 | + # pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device)) |
| 230 | + |
| 231 | + #################################################### |
| 232 | + # NEW |
| 233 | + |
| 234 | + if use_cache: |
| 235 | + pos_ids = torch.arange(self.current_pos, self.current_pos + seq_len, device=in_idx.device, dtype=torch.long) |
| 236 | + self.current_pos += seq_len |
| 237 | + else: |
| 238 | + pos_ids = torch.arange(0, seq_len, device=in_idx.device, dtype=torch.long) |
| 239 | + pos_embeds = self.pos_emb(pos_ids).unsqueeze(0) |
| 240 | + #################################################### |
| 241 | + |
| 242 | + x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size] |
| 243 | + x = self.drop_emb(x) |
| 244 | + |
| 245 | + # x = self.trf_blocks(x) |
| 246 | + #################################################### |
| 247 | + # NEW |
| 248 | + for blk in self.trf_blocks: |
| 249 | + x = blk(x, use_cache=use_cache) |
| 250 | + #################################################### |
| 251 | + |
| 252 | + x = self.final_norm(x) |
| 253 | + logits = self.out_head(x) |
| 254 | + return logits |
| 255 | + |
| 256 | + #################################################### |
| 257 | + # NEW |
| 258 | + def reset_kv_cache(self): |
| 259 | + for blk in self.trf_blocks: |
| 260 | + blk.att.reset_cache() |
| 261 | + |
| 262 | + #################################################### |
| 263 | + |
| 264 | + |
| 265 | +def generate_text_simple(model, idx, max_new_tokens, context_size): |
| 266 | + # idx is (B, T) array of indices in the current context |
| 267 | + for _ in range(max_new_tokens): |
| 268 | + |
| 269 | + # Crop current context if it exceeds the supported context size |
| 270 | + # E.g., if LLM supports only 5 tokens, and the context size is 10 |
| 271 | + # then only the last 5 tokens are used as context |
| 272 | + idx_cond = idx[:, -context_size:] |
| 273 | + |
| 274 | + # Get the predictions |
| 275 | + with torch.no_grad(): |
| 276 | + logits = model(idx_cond) |
| 277 | + |
| 278 | + # Focus only on the last time step |
| 279 | + # (batch, n_token, vocab_size) becomes (batch, vocab_size) |
| 280 | + logits = logits[:, -1, :] |
| 281 | + |
| 282 | + # Get the idx of the vocab entry with the highest logits value |
| 283 | + idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1) |
| 284 | + |
| 285 | + # Append sampled index to the running sequence |
| 286 | + idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1) |
| 287 | + |
| 288 | + return idx |
| 289 | + |
| 290 | + |
| 291 | +#################################################### |
| 292 | +# NEW |
| 293 | +def generate_text_simple_cached(model, idx, max_new_tokens): |
| 294 | + model.eval() |
| 295 | + model.reset_kv_cache() |
| 296 | + |
| 297 | + # Init cache with full prompt |
| 298 | + logits = model(idx, use_cache=True) |
| 299 | + |
| 300 | + for _ in range(max_new_tokens): |
| 301 | + last_logits = logits[:, -1] |
| 302 | + next_idx = last_logits.argmax(dim=-1, keepdim=True) |
| 303 | + idx = torch.cat([idx, next_idx], dim=1) |
| 304 | + |
| 305 | + logits = model(next_idx, use_cache=True) |
| 306 | + |
| 307 | + return idx |
| 308 | +#################################################### |
| 309 | + |
| 310 | + |
| 311 | +def main(): |
| 312 | + GPT_CONFIG_124M = { |
| 313 | + "vocab_size": 50257, # Vocabulary size |
| 314 | + "context_length": 1024, # Context length |
| 315 | + "emb_dim": 768, # Embedding dimension |
| 316 | + "n_heads": 12, # Number of attention heads |
| 317 | + "n_layers": 12, # Number of layers |
| 318 | + "drop_rate": 0.1, # Dropout rate |
| 319 | + "qkv_bias": False, # Query-Key-Value bias |
| 320 | + "kv_window_size": 48 # NEW: KV cache window size |
| 321 | + } |
| 322 | + |
| 323 | + torch.manual_seed(123) |
| 324 | + model = GPTModel(GPT_CONFIG_124M) |
| 325 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 326 | + model.to(device) |
| 327 | + model.eval() # disable dropout |
| 328 | + |
| 329 | + start_context = "Hello, I am" |
| 330 | + |
| 331 | + tokenizer = tiktoken.get_encoding("gpt2") |
| 332 | + encoded = tokenizer.encode(start_context) |
| 333 | + encoded_tensor = torch.tensor(encoded, device=device).unsqueeze(0) |
| 334 | + |
| 335 | + print(f"\n{50*'='}\n{22*' '}IN\n{50*'='}") |
| 336 | + print("\nInput text:", start_context) |
| 337 | + print("Encoded input text:", encoded) |
| 338 | + print("encoded_tensor.shape:", encoded_tensor.shape) |
| 339 | + |
| 340 | + if torch.cuda.is_available(): |
| 341 | + torch.cuda.synchronize() |
| 342 | + start = time.time() |
| 343 | + |
| 344 | + # token_ids = generate_text_simple( |
| 345 | + # model=model, |
| 346 | + # idx=encoded_tensor, |
| 347 | + # max_new_tokens=200, |
| 348 | + # context_size=GPT_CONFIG_124M["context_length"] |
| 349 | + # ) |
| 350 | + |
| 351 | + #################################################### |
| 352 | + # NEW |
| 353 | + token_ids = generate_text_simple_cached( |
| 354 | + model=model, |
| 355 | + idx=encoded_tensor, |
| 356 | + max_new_tokens=200, |
| 357 | + ) |
| 358 | + #################################################### |
| 359 | + |
| 360 | + if torch.cuda.is_available(): |
| 361 | + torch.cuda.synchronize() |
| 362 | + total_time = time.time() - start |
| 363 | + |
| 364 | + decoded_text = tokenizer.decode(token_ids.squeeze(0).tolist()) |
| 365 | + |
| 366 | + print(f"\n\n{50*'='}\n{22*' '}OUT\n{50*'='}") |
| 367 | + print("\nOutput:", token_ids) |
| 368 | + print("Output length:", len(token_ids[0])) |
| 369 | + print("Output text:", decoded_text) |
| 370 | + |
| 371 | + print(f"\nTime: {total_time:.2f} sec") |
| 372 | + print(f"{int(len(token_ids[0])/total_time)} tokens/sec") |
| 373 | + if torch.cuda.is_available(): |
| 374 | + max_mem_bytes = torch.cuda.max_memory_allocated() |
| 375 | + max_mem_gb = max_mem_bytes / (1024 ** 3) |
| 376 | + print(f"Max memory allocated: {max_mem_gb:.2f} GB") |
| 377 | + |
| 378 | + |
| 379 | +if __name__ == "__main__": |
| 380 | + main() |
0 commit comments