-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
72 lines (57 loc) · 2.37 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Imports
from clarifai_grpc.channel.clarifai_channel import ClarifaiChannel
from clarifai_grpc.grpc.api import resources_pb2, service_pb2, service_pb2_grpc
from clarifai_grpc.grpc.api.status import status_code_pb2
import streamlit as st
# Your Personal Access Token (PAT) for Clarifai authentication
PAT = st.secrets.PAT
# Specify the user and app IDs for Clarifai
USER_ID = st.secrets.USER_ID
APP_ID = st.secrets.APP_ID
# The ID of the Llama2 workflow to use
WORKFLOW_ID = st.secrets.WORKFLOW_ID
# Function to get a response from the Llama2 model
def get_response(prompt):
# Set up a connection to the Clarifai API using the specified PAT
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
# Create metadata for authentication
metadata = (("authorization", "Key " + PAT),)
print(f"metadata: {metadata}")
# Create a user and app data object
userDataObject = resources_pb2.UserAppIDSet(user_id=USER_ID, app_id=APP_ID)
print(f"userDataObject: {userDataObject}")
# Initialize an empty response string
response = ""
# Send a request to the Llama2 model using the specified workflow and input text
post_workflow_results_response = stub.PostWorkflowResults(
service_pb2.PostWorkflowResultsRequest(
user_app_id=userDataObject,
workflow_id=WORKFLOW_ID,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(text=resources_pb2.Text(raw=prompt))
)
],
),
metadata=metadata,
)
# Check if the API request was successful
if post_workflow_results_response.status.code != status_code_pb2.SUCCESS:
print(post_workflow_results_response.status)
print(response)
return response
# Extract results from the API response
results = post_workflow_results_response.results[0]
# Process each output produced by the model
for output in results.outputs:
model = output.model
# Print predicted concepts for the model
for concept in output.data.concepts:
print(" %s %.2f" % (concept.name, concept.value))
# Append the raw text output to the response string
response += output.data.text.raw + "\n"
# Print and return the response
print(f"The model responds with: {response}")
print(response)
return response