Skip to content

RayXGBRegressor passes wrong number of arguments #315

@astro-kevin

Description

@astro-kevin

When fitting a model with RayXGBRregressor, .fit appears to pass the wrong number of arguments _configure.fit

When running

reg = RayXGBRegressor(n_jobs=1)
reg.fit(X_train, y_train)

throws this error

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File ~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:518, in RayXGBRegressor.fit(self, X, y, sample_weight, base_margin, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, base_margin_eval_set, feature_weights, callbacks, ray_params, _remote, ray_dmatrix_params)
    [517](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:517) try:
--> [518](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:518)     model, feval, params = self._configure_fit(xgb_model, eval_metric, params)
    [519](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:519) except TypeError:
    [520](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:520)     # XGBoost >= 1.6.0

TypeError: XGBModel._configure_fit() takes 3 positional arguments but 4 were given

During handling of the above exception, another exception occurred:

TypeError                                 Traceback (most recent call last)
Cell In[44], [line 1](vscode-notebook-cell:?execution_count=44&line=1)
----> [1](vscode-notebook-cell:?execution_count=44&line=1) reg.fit(X_train, y_train)

File ~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost/core.py:726, in require_keyword_args.<locals>.throw_if.<locals>.inner_f(*args, **kwargs)
    [724](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost/core.py:724) for k, arg in zip(sig.parameters, args):
    [725](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost/core.py:725)     kwargs[k] = arg
--> [726](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost/core.py:726) return func(**kwargs)

File ~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:527, in RayXGBRegressor.fit(self, X, y, sample_weight, base_margin, eval_set, eval_metric, early_stopping_rounds, verbose, xgb_model, sample_weight_eval_set, base_margin_eval_set, feature_weights, callbacks, ray_params, _remote, ray_dmatrix_params)
    [518](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:518)     model, feval, params = self._configure_fit(xgb_model, eval_metric, params)
    [519](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:519) except TypeError:
    [520](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:520)     # XGBoost >= 1.6.0
    [521](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:521)     (
    [522](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:522)         model,
    [523](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:523)         feval,
    [524](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:524)         params,
    [525](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:525)         early_stopping_rounds,
    [526](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:526)         callbacks,
--> [527](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:527)     ) = self._configure_fit(
    [528](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:528)         xgb_model, eval_metric, params, early_stopping_rounds, callbacks
    [529](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:529)     )
    [531](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:531) # remove those as they will be set in RayXGBoostActor
    [532](https://vscode-remote+ssh-002dremote-002bsimba.vscode-resource.vscode-cdn.net/disk04/kevin/ML/~/anaconda3/envs/p3.12/lib/python3.12/site-packages/xgboost_ray/sklearn.py:532) params.pop("n_jobs", None)

TypeError: XGBModel._configure_fit() takes 3 positional arguments but 6 were given

Meanwhile, the comparable code in the non-Ray version of XGBoost works just fine.

reg = XGBRegressor(n_jobs = 1)
reg.fit(X_train, y_train)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions