-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_itemsplit.py
134 lines (97 loc) · 4.2 KB
/
evaluate_itemsplit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
os.environ["KERAS_BACKEND"] = "torch"
import argparse
import subprocess
from time import time
parser = argparse.ArgumentParser()
parser.add_argument("--seed", default=42, type=int, help="Random seed")
parser.add_argument("--device", default=None, type=str, help="Limit device to run on")
parser.add_argument("--flag", default="none", type=str, help="flag for distinction of experiments, default none")
# dataset
parser.add_argument("--dataset", default="-", type=str, help="Dataset to run on")
# sentence transformer details
parser.add_argument("--sbert", default="none", type=str, help="Input sentence transformer model to test")
parser.add_argument("--max_seq_length", default=0, type=int, help="Maximum sequece length for sbert")
parser.add_argument("--prefix", default=None, type=str, help="Add prefix to every item description")
parser.add_argument("--image_model", default="none", type=str, help="Input image model to test")
args = parser.parse_args([] if "__file__" not in globals() else None)
print(args)
if args.device is not None:
print(f"Limiting devices to {args.device}")
os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.device}"
import keras
import math
import numpy as np
import torch
from models import SparseKerasELSA
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
from config import config
from utils import *
import images
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device {DEVICE}")
def main(args):
# prepare logging folder
folder = f"results/{str(pd.Timestamp('today'))} {9*int(1e6)+np.random.randint(999999)}".replace(" ", "_")
if not os.path.exists(folder):
os.makedirs(folder)
vargs = vars(args)
vargs["cuda_or_cpu"] = DEVICE
pd.Series(vargs).to_csv(f"{folder}/setup.csv")
print(folder)
# set random seeds for reproducibility
torch.manual_seed(args.seed)
keras.utils.set_random_seed(args.seed)
np.random.seed(args.seed)
# read data
if args.dataset not in config.keys():
print("Unknown dataset. List of available datsets: \n")
for x in config.keys():
print(x)
return
print(f"Loading dataset {args.dataset}...")
dataset, params = config[args.dataset]
dataset.load_interactions(**params)
print("Preparing item-split evaluation...")
csev = ColdStartEvaluation(dataset)
if args.sbert!="none":
print(f"Initializing {args.sbert} sentence transformer...")
sbert = SentenceTransformer(args.sbert, device=DEVICE, trust_remote_code=True)
if args.max_seq_length > 0:
sbert.max_seq_length = args.max_seq_length
print("Encoding item descriptions...")
if args.prefix is not None:
print("adding prefix", args.prefix, "to all texts")
texts = [args.prefix + x for x in dataset.texts]
print(texts[:10])
embs = sbert.encode(texts, show_progress_bar=True)
else:
embs = sbert.encode(dataset.texts, show_progress_bar=True)
elif args.image_model!="none":
image_model = images.ImageModel(args.image_model, device=DEVICE)
tokenized_images_dict = images.read_images_into_dict(dataset.all_interactions.item_id.cat.categories, fn=image_model.tokenize, path=dataset.images_dir, suffix=dataset.images_suffix)
tokenized_test_images = images.read_images_from_dict(dataset.all_interactions.item_id.cat.categories, tokenized_images_dict)
embs = image_model.encode(tokenized_test_images)
else:
print("Model not specified.")
model = SparseKerasELSA(
len(dataset.all_interactions.item_id.cat.categories),
embs.shape[1],
dataset.all_interactions.item_id.cat.categories,
device=DEVICE,
)
model.to(DEVICE)
model.set_weights([embs])
print("Calculating predictions...")
df_preds = model.predict_df(csev.test_src, candidates_df=csev.candidates_df)
print("Calculating metrics...")
results = csev(df_preds)
print(results)
# final logs
pd.Series(results).to_csv(f"{folder}/result.csv")
print("results file written")
pd.Series(0).to_csv(f"{folder}/timer.csv")
print("timer written")
if __name__ == "__main__":
main(args)