forked from DenisDsh/PyTorch-Deep-CORAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_mean_std.py
60 lines (45 loc) · 1.63 KB
/
compute_mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torchvision import transforms, datasets
import numpy as np
def compute_mean_std(path_dataset):
"""
Compute mean and standard deviation of an image dataset.
Acknowledgment : http://forums.fast.ai/t/image-normalization-in-pytorch/7534
"""
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor()
])
dataset = datasets.ImageFolder(root=path_dataset,
transform=transform)
# Choose a large batch size to better approximate. Optimally load the dataset entirely on memory.
data_loader = torch.utils.data.DataLoader(dataset, batch_size=4096, shuffle=False, num_workers=4)
pop_mean = []
pop_std = []
for i, data in enumerate(data_loader, 0):
# shape (batch_size, 3, height, width)
numpy_image = data[0].numpy()
# shape (3,) -> 3 channels
batch_mean = np.mean(numpy_image, axis=(0, 2, 3))
batch_std = np.std(numpy_image, axis=(0, 2, 3))
pop_mean.append(batch_mean)
pop_std.append(batch_std)
# shape (num_iterations, 3) -> (mean across 0th axis) -> shape (3,)
pop_mean = np.array(pop_mean).mean(axis=0)
pop_std = np.array(pop_std).mean(axis=0)
values = {
'mean': pop_mean,
'std': pop_std
}
return values
def main():
mean_std = {}
for dataset in ['amazon', 'dslr', 'webcam']:
# Construct path
dataset_path = './data/%s/images' % dataset
values = compute_mean_std(dataset_path)
# Add values to dict
mean_std[dataset] = values
print(mean_std)
if __name__ == '__main__':
main()