-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscrete_learning.py
205 lines (164 loc) · 5.95 KB
/
discrete_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!.venv/bin/python
# PYTHON_ARGCOMPLETE_OK
# imports {{{
from common.linear_decay import LinearDecay
from common.agent import make_agent, MultiAgent
from common.policy import make_policy
from common.env import DiscreteEnv
from tensorboardX import SummaryWriter
from multiprocessing import Process
import torch.nn as nn
import torch
import numpy as np
import argparse, argcomplete, shutil, yaml, os, time
# }}}
def save_models(run_name, agent_list, unique_agent_indices):
# loop through agent types
# save only one of each, agents are similar because of the evolution anyway
for agent_type, idx in unique_agent_indices.items():
torch.save(agent_list[idx].net.state_dict(), f'models/{run_name}/{agent_type}.pt')
def discrete_learning(args):
# initialization {{{
dirname = os.path.dirname(os.path.abspath(__file__))
dirname = os.path.join(dirname, 'runs/'+args["name"])
if os.path.isdir(dirname):
if args["delete_previous"]:
shutil.rmtree(dirname, ignore_errors=True)
else:
print(f'{args["name"]} > This run already exists')
quit()
with open('parameters.yaml', 'r') as f:
Params = yaml.load(f, Loader=yaml.FullLoader)
params = Params[args["name"]]
# count agents
N_AGENTS = 0
for agent_obj in params['agents']:
if type(agent_obj) == str:
N_AGENTS += 1
else:
for i in range(agent_obj['n_agents']):
N_AGENTS += 1
# construct environment
goal_closeness = None
if 'goal_closeness' in params:
# set goal closeness if needed
goal_closeness = params['goal_closeness']
env = DiscreteEnv(N_AGENTS, params['map_image'], params['obstacles'], goal_closeness)
S = env.reset()
print(f'{args["name"]} > Environment generated:\n'+
f'\t- map: {params["map_image"]}\n'+
f'\t- agents: {N_AGENTS}\n'+
f'\t- obstacles: {params["obstacles"]}\n'+
f'\t- observation_space_size: {env.get_os_len()}\n'+
f'\t- max_distance: {np.max(env.cost_map)}')
# check if a folder exists for the models to be saved in, else create it
if not os.path.isdir(f'models/{args["name"]}'):
os.mkdir(f'models/{args["name"]}')
# construct agents
unique_agent_indices = {} # store the index of 1 agent from each type (for saving models)
idx = 0
agent_list = []
for agent_obj in params['agents']:
if type(agent_obj) == str: # only string is provided, no settings
agent_type = agent_obj
agent = make_agent(env, Params['agent_definitions'][agent_type])
agent_list.append(agent)
unique_agent_indices.update({agent_type: idx})
idx += 1
else: # settings are provided
for i in range(agent_obj['n_agents']):
policy = None
if 'policy' in agent_obj:
policy = make_policy(env, agent_obj['policy'])
agent = make_agent(env, Params['agent_definitions'][agent_obj['type']], policy)
if 'load' in agent_obj:
agent.net.load_state_dict(torch.load(f'models/{agent_obj["load"]}.pt'))
agent_list.append(agent)
unique_agent_indices.update({agent_obj['type']: idx})
idx += 1
agents = MultiAgent(agent_list, evolution_frequency=params['evolution_frequency'])
# log to tensorboard
writer = SummaryWriter(f'runs/{args["name"]}')
writer.add_text('parameters', str(params).replace('{', '').replace('}', '').replace(', ', '\n'))
eps = LinearDecay(params['epsilon_start'], params['epsilon_final'],
params['epsilon_decay_length']*N_AGENTS)
steps = 0
number_of_steps = np.zeros((N_AGENTS,))
# }}}
# training loop {{{
agents.epsilon = eps()
episode_start_time = time.time()
# S = env.reset() # this was called before, to get the stats
S = env.serialize(S)
A = agents.reset(S)
try:
while True:
if not args['quiet']:
if steps % 1000 == 0:
print(f'{args["name"]} > Steps: {steps:.1e}')
for n in range(N_AGENTS):
agents.epsilon = eps()
writer.add_scalar('global/epsilon', eps(), steps)
S, R, done, _ = env.step(A)
S = env.serialize(S)
A, L = agents.step(S, R, done)
if type(L) != type(None):
writer.add_scalar(f'loss/agent_{env.curr_agent}', L, steps)
if done:
writer.add_scalar(f'number_of_steps/agent_{env.curr_agent}',
number_of_steps[env.curr_agent], steps)
number_of_steps[env.curr_agent] = 0
writer.add_scalar('global/episode_time', time.time() - episode_start_time, steps)
episode_start_time = time.time()
else:
number_of_steps[env.curr_agent] += 1
if args["render"]:
env.render()
# saving models
if steps % (params['steps']//10) == 0 and steps != 0:
print(f'{args["name"]} > Saving models...')
save_models(args['name'], agents.agent_list, unique_agent_indices)
if steps > params['steps']:
break
eps.step()
steps += 1
except KeyboardInterrupt:
pass
finally:
print(f'{args["name"]} > Saving models...')
save_models(args['name'], agents.agent_list, unique_agent_indices)
# }}}
if __name__ == '__main__':
# get available configurations
with open('parameters.yaml', 'r') as f:
Params = yaml.load(f, Loader=yaml.FullLoader)
choices = np.array(list(Params.keys()))
choices = choices[choices != 'agent_definitions']
# parse arguments {{{
parser = argparse.ArgumentParser()
parser.add_argument('names', default='default', nargs='+', choices=choices, help='Names of the parameter groups')
parser.add_argument('-r', '--render', action='store_true', help='Render environment')
parser.add_argument('-q', '--quiet', action='store_true', help='Do not print progress')
parser.add_argument('-d', '--delete_previous', action='store_true', help='If a run named "name" already exists, delete the old run')
argcomplete.autocomplete(parser)
args = parser.parse_args()
# }}}
if len(args.names) == 1:
# dont do multiprocessing
args.name = args.names[0]
arg_dict = vars(args)
discrete_learning(arg_dict)
else:
# start learning in separate processes
arg_dict = vars(args)
processes = []
for name in args.names:
arg_dict.update({'name': name})
process = Process(target=discrete_learning, args=(arg_dict,))
processes.append(process)
process.start()
try:
for process in processes:
process.join()
except KeyboardInterrupt:
pass