Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Questions about depth and normal estimators #12

Open
Wi-sc opened this issue Dec 4, 2021 · 0 comments
Open

Questions about depth and normal estimators #12

Wi-sc opened this issue Dec 4, 2021 · 0 comments

Comments

@Wi-sc
Copy link

Wi-sc commented Dec 4, 2021

Hi, there.
Thanks for your release. I'm interested in your work and trying to implement it. I can get reasonable results directly using images without depth and normal estimators. But it doesn't work when depth and normal estimators are also implemented. I want to make sure if the two parts are trained totally separated? And do you add additional operations on the depth maps, like the sigmoid or clamp function? Because I also found some values less than 0.

This is my code of depth and normal estimators:

class Net(nn.Module):
    def __init__(self, out_planes, layer_names, input_planes=3):
        super().__init__()
        # Encoder
        module_list = list()
        resnet = resnet18(pretrained=True)
        in_conv = nn.Conv2d(input_planes, 64, kernel_size=7, stride=2, padding=3, bias=False)
        module_list.append(
            nn.Sequential(
                resnet.conv1 if input_planes == 3 else in_conv,
                resnet.bn1,
                resnet.relu,
                resnet.maxpool
            )
        )
        module_list.append(resnet.layer1)
        module_list.append(resnet.layer2)
        module_list.append(resnet.layer3)
        module_list.append(resnet.layer4)
        self.encoder = nn.ModuleList(module_list)

        # Decoder
        for out_plane, layer_name in zip(out_planes, layer_names):
            module_list = list()
            revresnet = revuresnet18(out_planes=out_plane)
            module_list.append(revresnet.layer1)
            module_list.append(revresnet.layer2)
            module_list.append(revresnet.layer3)
            module_list.append(revresnet.layer4)
            module_list.append(
                nn.Sequential(
                    revresnet.deconv1,
                    revresnet.bn1,
                    revresnet.relu,
                    revresnet.deconv2
                )
            )
            module_list = nn.ModuleList(module_list).cuda()
            setattr(self, 'decoder_' + layer_name, module_list)

    def forward(self, im):
        # Encode
        feat = im
        feat_maps = list()
        for f in self.encoder:
            feat = f(feat)
            feat_maps.append(feat)
        x = feat_maps[-1]
        for idx, f in enumerate(self.decoder_depth):
            x = f(x)
            if idx < len(self.decoder_depth) - 1:
                feat_map = feat_maps[-(idx + 2)]
                assert feat_map.shape[2:4] == x.shape[2:4]
                x = torch.cat((x, feat_map), dim=1)
        depth_output = x

        x = feat_maps[-1]
        for idx, f in enumerate(self.decoder_mask):
            x = f(x)
            if idx < len(self.decoder_depth) - 1:
                feat_map = feat_maps[-(idx + 2)]
                assert feat_map.shape[2:4] == x.shape[2:4]
                x = torch.cat((x, feat_map), dim=1)
        mask_output = x

        x = feat_maps[-1]
        for idx, f in enumerate(self.decoder_normal):
            x = f(x)
            if idx < len(self.decoder_depth) - 1:
                feat_map = feat_maps[-(idx + 2)]
                assert feat_map.shape[2:4] == x.shape[2:4]
                x = torch.cat((x, feat_map), dim=1)
        normal_output = x

        return depth_output, mask_output, normal_output

For inference:

depth, mask, normal = depth_normal_model(img_input)
depth = depth*mask
input_2 = torch.cat([depth, normal], dim=1)
sdf = model(points_input, input_2)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant