You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, there.
Thanks for your release. I'm interested in your work and trying to implement it. I can get reasonable results directly using images without depth and normal estimators. But it doesn't work when depth and normal estimators are also implemented. I want to make sure if the two parts are trained totally separated? And do you add additional operations on the depth maps, like the sigmoid or clamp function? Because I also found some values less than 0.
This is my code of depth and normal estimators:
class Net(nn.Module):
def __init__(self, out_planes, layer_names, input_planes=3):
super().__init__()
# Encoder
module_list = list()
resnet = resnet18(pretrained=True)
in_conv = nn.Conv2d(input_planes, 64, kernel_size=7, stride=2, padding=3, bias=False)
module_list.append(
nn.Sequential(
resnet.conv1 if input_planes == 3 else in_conv,
resnet.bn1,
resnet.relu,
resnet.maxpool
)
)
module_list.append(resnet.layer1)
module_list.append(resnet.layer2)
module_list.append(resnet.layer3)
module_list.append(resnet.layer4)
self.encoder = nn.ModuleList(module_list)
# Decoder
for out_plane, layer_name in zip(out_planes, layer_names):
module_list = list()
revresnet = revuresnet18(out_planes=out_plane)
module_list.append(revresnet.layer1)
module_list.append(revresnet.layer2)
module_list.append(revresnet.layer3)
module_list.append(revresnet.layer4)
module_list.append(
nn.Sequential(
revresnet.deconv1,
revresnet.bn1,
revresnet.relu,
revresnet.deconv2
)
)
module_list = nn.ModuleList(module_list).cuda()
setattr(self, 'decoder_' + layer_name, module_list)
def forward(self, im):
# Encode
feat = im
feat_maps = list()
for f in self.encoder:
feat = f(feat)
feat_maps.append(feat)
x = feat_maps[-1]
for idx, f in enumerate(self.decoder_depth):
x = f(x)
if idx < len(self.decoder_depth) - 1:
feat_map = feat_maps[-(idx + 2)]
assert feat_map.shape[2:4] == x.shape[2:4]
x = torch.cat((x, feat_map), dim=1)
depth_output = x
x = feat_maps[-1]
for idx, f in enumerate(self.decoder_mask):
x = f(x)
if idx < len(self.decoder_depth) - 1:
feat_map = feat_maps[-(idx + 2)]
assert feat_map.shape[2:4] == x.shape[2:4]
x = torch.cat((x, feat_map), dim=1)
mask_output = x
x = feat_maps[-1]
for idx, f in enumerate(self.decoder_normal):
x = f(x)
if idx < len(self.decoder_depth) - 1:
feat_map = feat_maps[-(idx + 2)]
assert feat_map.shape[2:4] == x.shape[2:4]
x = torch.cat((x, feat_map), dim=1)
normal_output = x
return depth_output, mask_output, normal_output
Hi, there.
Thanks for your release. I'm interested in your work and trying to implement it. I can get reasonable results directly using images without depth and normal estimators. But it doesn't work when depth and normal estimators are also implemented. I want to make sure if the two parts are trained totally separated? And do you add additional operations on the depth maps, like the sigmoid or clamp function? Because I also found some values less than 0.
This is my code of depth and normal estimators:
For inference:
The text was updated successfully, but these errors were encountered: