diff --git a/.gitattributes b/.gitattributes
index 2c20685..e69de29 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -1,3 +0,0 @@
-how-to/sample_app/exe/hrnet_onnx/deploy.so filter=lfs diff=lfs merge=lfs -text
-how-to/sample_app/exe/yolov2_onnx/deploy.so filter=lfs diff=lfs merge=lfs -text
-how-to/sample_app/exe/yolov3_onnx/deploy.so filter=lfs diff=lfs merge=lfs -text
diff --git a/apps/README.md b/apps/README.md
index 7fb6262..15bb14f 100644
--- a/apps/README.md
+++ b/apps/README.md
@@ -190,7 +190,7 @@ Provided fixed sequence is as follows.
| No. | Function | Details |
|:---|:---|:---|
-| 1 |conv_yuv2rgb |Convert YUY2 to RGB.
Default input size is 4196x2160.|
+| 1 |conv_yuv2rgb |Convert YUY2 to RGB.
Default input size is 4096x2160.|
| 2 |resize |Resize to specified size.
Default is 640x640. |
| 3 |cast_to_fp16 | Cast data to FP16 for DRP-AI.|
| 4 |normalize | Normalize pixel values with mean and standard deviation.
Default value are mean=[0, 0, 0] and std=[1/255, 1/255, 1/255].|
diff --git a/docs/Model_List.md b/docs/Model_List.md
index 06db616..1f5c060 100644
--- a/docs/Model_List.md
+++ b/docs/Model_List.md
@@ -9,115 +9,172 @@ Below is a list of AI models that Renesas has verified for conversion with the D
* RZ/V2MA Linux Package v1.0.0
* RZ/V2MA DRP-AI Support Package v7.20
-| AI model | Task | Format | Inference time
(CPU only) | Inference time
(CPU+DRP-AI) |
-| ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------- | -------------------------------------------------------- | ---------------------------- | ------------------------------ |
-| ResNet18-v1 | Classification | ONNX | 488ms | 17ms |
-| ResNet18-v2 | Classification | ONNX | 487ms | 19ms |
-| ResNet34-v1 | Classification | ONNX | 870ms | 27ms |
-| ResNet34-v2 | Classification | ONNX | 890ms | 29ms |
-| ResNet50-v1 | Classification | ONNX | 1358ms | 36ms |
-| ResNet50-v2 | Classification | ONNX | 1662ms | 46ms |
-| ResNet101-v1 | Classification | ONNX | 2479ms | 56ms |
-| ResNet101-v2 | Classification | ONNX | 2777ms | 70ms |
-| MobileNetV2 | Classification | ONNX | 224ms | 21ms |
-| SqueezeNet1.1-7 | Classification | ONNX | 142ms | 8ms |
-| DenseNet9 | Classification | ONNX | 1345ms | 149ms |
-| Inception-v1 | Classification | ONNX | 738ms | 649ms |
-| Inception-v2 | Classification | ONNX | 1165ms | 128ms |
-| YOLOv2 | Object Detection | ONNX | 6688ms | 81ms |
-| YOLOv3 | Object Detection | ONNX | 15507ms | 222ms |
-| YOLOv5l | Object Detection | ONNX | 13575ms | 222ms |
-| HRNet | Body Keypiont 2D | ONNX | 3639ms | 61ms |
-| ResNet18 | Classification | PyTorch | 488ms | 18ms |
-| ResNet34 | Classification | PyTorch | 897ms | 27ms |
-| ResNet50 | Classification | PyTorch | 1619ms | 38ms |
-| ResNet101 | Classification | PyTorch | 2760ms | 58ms |
-| ResNeXt-50-32x4d | Classification | PyTorch | 2038ms | 504ms |
-| MobileNetV2 | Classification | PyTorch | 226ms | 21ms |
-| SqueezeNet1_1 | Classification | PyTorch | 142ms | 41ms |
-| DenseNet-121 | Classification | PyTorch | 1436ms | 307ms |
-| DenseNet-161 | Classification | PyTorch | 4072ms | 1172ms |
-| GoogleNet | Classification | PyTorch | 758ms | 153ms |
-| MnasNet0_5 | Classification | PyTorch | 102ms | 37ms |
-| DeepLabv3-resnet50 | Segmentation | PyTorch | 15467ms | 172ms |
-| DeepLabv3-resnet101 | Segmentation | PyTorch | 21524ms | 274ms |
-| FCN_resnet101 | Segmentation | PyTorch | 18151ms | 265ms |
-| DeepPose | Body Keypoint 2D | PyTorch | 2239ms | 36ms |
-| HRNetV2 | Face Detection 2D | PyTorch | 1936ms | 52ms |
-| HRNetV2 DarkPose | Face Detection 2D | PyTorch | 3215ms | 67ms |
-| [ConvNeXt atto](https://github.com/rwightman/pytorch-image-models#aug-15-2022) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 565ms | 397ms |
-| [ConvNeXt femto](https://github.com/rwightman/pytorch-image-models#aug-5-2022) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 697ms | 498ms |
-| [ConvNeXt femto ols](https://github.com/rwightman/pytorch-image-models#aug-5-2022) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 717ms | 488ms |
-| [CSP-Darknet](https://rwightman.github.io/pytorch-image-models/models/csp-darknet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1938ms | 96ms |
-| [CSP-ResNet](https://rwightman.github.io/pytorch-image-models/models/csp-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1372ms | 68ms |
-| [CSP-ResNeXt](https://rwightman.github.io/pytorch-image-models/models/csp-resnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1645ms | 484ms |
-| [Darknet-53](https://github.com/rwightman/pytorch-image-models#july-8-2022) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3471ms | 51ms |
-| [Darknet-aa53](https://github.com/rwightman/pytorch-image-models#july-27-2022) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2907ms | 94ms |
-| [DenseNet121](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1438ms | 246ms |
-| [DenseNet161](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 4050ms | 1102ms |
-| [DenseNet169](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1913ms | 406ms |
-| [DenseNet201](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2856ms | 843ms |
-| [DenseNet Blur 121d](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1568ms | 263ms |
-| DLA(Dense Layer Aggregation)102x | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3090ms | 850ms |
-| DLA102x2 | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 4820ms | 1523ms |
-| DLA46x_c | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 374ms | 108ms |
-| DLA60x_c | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 403ms | 120ms |
-| [DPN(Dual Path Network)107](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 11043ms | 2257ms |
-| [DPN68](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1448ms | 651ms |
-| [DPN68b](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1533ms | 622ms |
-| [ECA-ResNet101d](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2935ms | 412ms |
-| [ECA-ResNet26t](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1141ms | 147ms |
-| [ECA-ResNet50d](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1732ms | 255ms |
-| [ECA-ResNet50t](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1771ms | 253ms |
-| [ECA-ResNet light](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1569ms | 194ms |
-| [EfficientNet Edge Large](https://rwightman.github.io/pytorch-image-models/models/efficientnet/https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2138ms | 198ms |
-| [pruned EfficientNet Edge Large](https://rwightman.github.io/pytorch-image-models/models/efficientnet/https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2128ms | 198ms |
-| [EfficientNet Edge Medium](https://rwightman.github.io/pytorch-image-models/models/efficientnet/https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1407ms | 161ms |
-| [EfficientNet Edge Small](https://rwightman.github.io/pytorch-image-models/models/efficientnet/https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 942ms | 126ms |
-| [pruned EfficientNet Edge Small](https://rwightman.github.io/pytorch-image-models/models/efficientnet/https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 942ms | 125ms |
-| [EfficientNet Lite0](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 295ms | 86ms |
-| [Ensemble Adversarial Inception ResNet v2](https://rwightman.github.io/pytorch-image-models/models/ensemble-adversarial/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3374ms | 1739ms |
-| [ESE-VoVNet 19-dw](https://rwightman.github.io/pytorch-image-models/models/ese-vovnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 734ms | 80ms |
-| [ESE-VoVNet 39b](https://rwightman.github.io/pytorch-image-models/models/ese-vovnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3765ms | 114ms |
-| [FBNet-C](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 334ms | 105ms |
-| [FBNetV3-B](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 434ms | 305ms |
-| [FBNetV3-D](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 466ms | 259ms |
-| [FBNetV3-G](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 893ms | 570ms |
-| Global Context Resnet50t (gcresnet50t) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1708ms | 165ms |
-| GPU-Efficient ResNet Large (gernet_l) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1737ms | 35ms |
-| GPU-Efficient ResNet Middle (gernet_m) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1493ms | 27ms |
-| GPU-Efficient ResNet Small (gernet_s) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 353ms | 13ms |
-| GhostNet-1.0x | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 180ms | 87ms |
-| [(Gluon) ResNet101 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2745ms | 58ms |
-| [(Gluon) ResNet101 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2847ms | 58ms |
-| [(Gluon) ResNet101 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2836ms | 88ms |
-| [(Gluon) ResNet101 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3163ms | 62ms |
-| [(Gluon) ResNet152 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3930ms | 78ms |
-| [(Gluon) ResNet152 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3991ms | 78ms |
-| [(Gluon) ResNet152 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3996ms | 110ms |
-| [(Gluon) ResNet152 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 4312ms | 82ms |
-| [(Gluon) ResNet18 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 497ms | 18ms |
-| [(Gluon) ResNet34 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 873ms | 27ms |
-| [(Gluon) ResNet50 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1638ms | 38ms |
-| [(Gluon) ResNet50 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1727ms | 38ms |
-| [(Gluon) ResNet50 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 1720ms | 70ms |
-| [(Gluon) ResNet50 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2036ms | 42ms |
-| [(Gluon) ResNeXt101 32x4d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3667ms | 927ms |
-| [(Gluon) ResNeXt101 64x4d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 7244ms | 1703ms |
-| [(Gluon) SENet154](https://rwightman.github.io/pytorch-image-models/models/gloun-senet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 9955ms | 1836ms |
-| [(Gluon) SE-ResNeXt101 32-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 3776ms | 1142ms |
-| [(Gluon) SE-ResNeXt101 64-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 7261ms | 1917ms |
-| [(Gluon) SE-ResNeXt50 32-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2086ms | 628ms |
-| [(Gluon) Xception65](https://rwightman.github.io/pytorch-image-models/models/gloun-xception/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 4374ms | 140ms |
-| HardcoreNAS_A | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 216ms | 138ms |
-| HardcoreNAS_B | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 233ms | 128ms |
-| HardcoreNAS_C | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 245ms | 150ms |
-| HardcoreNAS_D | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 269ms | 153ms |
-| HardcoreNAS_E | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 314ms | 188ms |
-| HardcoreNAS_F | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 310ms | 186ms |
-| [HRNet w18](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 2203ms | 60ms |
-| [HRNet w18 small](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [Timm](https://rwightman.github.io/pytorch-image-models) | 868ms | 24ms |
+| AI model | Task | Format | Inference time
(CPU only@V2MA) | Inference time
(CPU+DRP-AI@V2MA) |
+| ------------------------------------------------------------------------------------------------------------------------- | ----------------- | ------------------------------------------------------------------------ | --------------------------------- | ----------------------------------- |
+| ResNet18-v1 | Classification | ONNX | 488ms | 17ms |
+| ResNet18-v2 | Classification | ONNX | 487ms | 19ms |
+| ResNet34-v1 | Classification | ONNX | 870ms | 27ms |
+| ResNet34-v2 | Classification | ONNX | 890ms | 29ms |
+| ResNet50-v1 | Classification | ONNX | 1358ms | 36ms |
+| ResNet50-v2 | Classification | ONNX | 1662ms | 46ms |
+| ResNet101-v1 | Classification | ONNX | 2479ms | 56ms |
+| ResNet101-v2 | Classification | ONNX | 2777ms | 70ms |
+| MobileNetV2 | Classification | ONNX | 224ms | 21ms |
+| SqueezeNet1.1-7 | Classification | ONNX | 142ms | 8ms |
+| DenseNet9 | Classification | ONNX | 1345ms | 149ms |
+| Inception-v1 | Classification | ONNX | 738ms | 649ms |
+| Inception-v2 | Classification | ONNX | 1165ms | 128ms |
+| YOLOv2 | Object Detection | ONNX | 6688ms | 81ms |
+| YOLOv3 | Object Detection | ONNX | 15507ms | 222ms |
+| YOLOv5l | Object Detection | ONNX | 13575ms | 222ms |
+| HRNet | Body Keypiont 2D | ONNX | 3639ms | 61ms |
+| ResNet18 | Classification | PyTorch | 488ms | 18ms |
+| ResNet34 | Classification | PyTorch | 897ms | 27ms |
+| ResNet50 | Classification | PyTorch | 1619ms | 38ms |
+| ResNet101 | Classification | PyTorch | 2760ms | 58ms |
+| ResNeXt-50-32x4d | Classification | PyTorch | 2038ms | 504ms |
+| MobileNetV2 | Classification | PyTorch | 226ms | 21ms |
+| SqueezeNet1_1 | Classification | PyTorch | 142ms | 41ms |
+| DenseNet-121 | Classification | PyTorch | 1436ms | 307ms |
+| DenseNet-161 | Classification | PyTorch | 4072ms | 1172ms |
+| GoogleNet | Classification | PyTorch | 758ms | 153ms |
+| MnasNet0_5 | Classification | PyTorch | 102ms | 37ms |
+| DeepLabv3-resnet50 | Segmentation | PyTorch | 15467ms | 172ms |
+| DeepLabv3-resnet101 | Segmentation | PyTorch | 21524ms | 274ms |
+| FCN_resnet101 | Segmentation | PyTorch | 18151ms | 265ms |
+| DeepPose | Body Keypoint 2D | PyTorch | 2239ms | 36ms |
+| HRNetV2 | Face Detection 2D | PyTorch | 1936ms | 52ms |
+| HRNetV2 DarkPose | Face Detection 2D | PyTorch | 3215ms | 67ms |
+| [ConvNeXt atto](https://github.com/rwightman/pytorch-image-models#aug-15-2022) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 565ms | 397ms |
+| [ConvNeXt femto](https://github.com/rwightman/pytorch-image-models#aug-5-2022) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 697ms | 498ms |
+| [ConvNeXt femto ols](https://github.com/rwightman/pytorch-image-models#aug-5-2022) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 717ms | 488ms |
+| [CSP-Darknet](https://rwightman.github.io/pytorch-image-models/models/csp-darknet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1938ms | 96ms |
+| [CSP-ResNet](https://rwightman.github.io/pytorch-image-models/models/csp-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1372ms | 68ms |
+| [CSP-ResNeXt](https://rwightman.github.io/pytorch-image-models/models/csp-resnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1645ms | 484ms |
+| [Darknet-53](https://github.com/rwightman/pytorch-image-models#july-8-2022) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3471ms | 51ms |
+| [Darknet-aa53](https://github.com/rwightman/pytorch-image-models#july-27-2022) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2907ms | 94ms |
+| [DenseNet121](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1438ms | 246ms |
+| [DenseNet161](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4050ms | 1102ms |
+| [DenseNet169](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1913ms | 406ms |
+| [DenseNet201](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2856ms | 843ms |
+| [DenseNet Blur 121d](https://rwightman.github.io/pytorch-image-models/models/densenet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1568ms | 263ms |
+| DLA(Dense Layer Aggregation)102x | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3090ms | 850ms |
+| DLA102x2 | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4820ms | 1523ms |
+| DLA46x_c | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 374ms | 108ms |
+| DLA60x_c | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 403ms | 120ms |
+| [DPN(Dual Path Network)107](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 11043ms | 2257ms |
+| [DPN68](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1448ms | 651ms |
+| [DPN68b](https://rwightman.github.io/pytorch-image-models/models/dpn/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1533ms | 622ms |
+| [ECA-ResNet101d](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2935ms | 412ms |
+| [ECA-ResNet26t](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1141ms | 147ms |
+| [ECA-ResNet50d](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1732ms | 255ms |
+| [ECA-ResNet50t](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1771ms | 253ms |
+| [ECA-ResNet light](https://rwightman.github.io/pytorch-image-models/models/ecaresnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1569ms | 194ms |
+| [EfficientNet Edge Large](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2138ms | 198ms |
+| [pruned EfficientNet Edge Large](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2128ms | 198ms |
+| [EfficientNet Edge Medium](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1407ms | 161ms |
+| [EfficientNet Edge Small](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 942ms | 126ms |
+| [pruned EfficientNet Edge Small](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 942ms | 125ms |
+| [EfficientNet Lite0](https://rwightman.github.io/pytorch-image-models/models/efficientnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 295ms | 86ms |
+| [Ensemble Adversarial Inception ResNet v2](https://rwightman.github.io/pytorch-image-models/models/ensemble-adversarial/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3374ms | 1739ms |
+| [ESE-VoVNet 19-dw](https://rwightman.github.io/pytorch-image-models/models/ese-vovnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 734ms | 80ms |
+| [ESE-VoVNet 39b](https://rwightman.github.io/pytorch-image-models/models/ese-vovnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3765ms | 114ms |
+| [FBNet-C](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 334ms | 105ms |
+| [FBNetV3-B](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 434ms | 305ms |
+| [FBNetV3-D](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 466ms | 259ms |
+| [FBNetV3-G](https://rwightman.github.io/pytorch-image-models/models/fbnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 893ms | 570ms |
+| Global Context Resnet50t (gcresnet50t) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1708ms | 165ms |
+| GPU-Efficient ResNet Large (gernet_l) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1737ms | 35ms |
+| GPU-Efficient ResNet Middle (gernet_m) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1493ms | 27ms |
+| GPU-Efficient ResNet Small (gernet_s) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 353ms | 13ms |
+| GhostNet-1.0x | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 180ms | 87ms |
+| [(Gluon) ResNet101 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2745ms | 58ms |
+| [(Gluon) ResNet101 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2847ms | 58ms |
+| [(Gluon) ResNet101 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2836ms | 88ms |
+| [(Gluon) ResNet101 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3163ms | 62ms |
+| [(Gluon) ResNet152 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3930ms | 78ms |
+| [(Gluon) ResNet152 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3991ms | 78ms |
+| [(Gluon) ResNet152 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3996ms | 110ms |
+| [(Gluon) ResNet152 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4312ms | 82ms |
+| [(Gluon) ResNet18 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 497ms | 18ms |
+| [(Gluon) ResNet34 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 873ms | 27ms |
+| [(Gluon) ResNet50 v1b](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1638ms | 38ms |
+| [(Gluon) ResNet50 v1c](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1727ms | 38ms |
+| [(Gluon) ResNet50 v1d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1720ms | 70ms |
+| [(Gluon) ResNet50 v1s](https://rwightman.github.io/pytorch-image-models/models/gloun-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2036ms | 42ms |
+| [(Gluon) ResNeXt101 32x4d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3667ms | 927ms |
+| [(Gluon) ResNeXt101 64x4d](https://rwightman.github.io/pytorch-image-models/models/gloun-resnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 7244ms | 1703ms |
+| [(Gluon) SENet154](https://rwightman.github.io/pytorch-image-models/models/gloun-senet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 9955ms | 1836ms |
+| [(Gluon) SE-ResNeXt101 32-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3776ms | 1142ms |
+| [(Gluon) SE-ResNeXt101 64-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 7261ms | 1917ms |
+| [(Gluon) SE-ResNeXt50 32-4d](https://rwightman.github.io/pytorch-image-models/models/gloun-seresnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2086ms | 628ms |
+| [(Gluon) Xception65](https://rwightman.github.io/pytorch-image-models/models/gloun-xception/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4374ms | 140ms |
+| HardcoreNAS_A | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 216ms | 138ms |
+| HardcoreNAS_B | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 233ms | 128ms |
+| HardcoreNAS_C | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 245ms | 150ms |
+| HardcoreNAS_D | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 269ms | 153ms |
+| HardcoreNAS_E | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 314ms | 188ms |
+| HardcoreNAS_F | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 310ms | 186ms |
+| [HRNet w18](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2203ms | 60ms |
+| [HRNet w18 small](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 868ms | 24ms |
+| [HRNet w18 small V2](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1367ms | 38ms |
+| [HRNet w30](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3551ms | 78ms |
+| [HRNet w32](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4604ms | 75ms |
+| [HRNet w40](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 5731ms | 104ms |
+| [HRNet w44](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 7707ms | 116ms |
+| [HRNet w48](https://rwightman.github.io/pytorch-image-models/models/hrnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 7854ms | 123ms |
+| [Instagram ResNeXt101 32x8 WSL](https://rwightman.github.io/pytorch-image-models/models/ig-resnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 8149ms | 2938ms |
+| [Inception ResNet v2](https://rwightman.github.io/pytorch-image-models/models/inception-resnet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3358ms | 1739ms |
+| PP-LCNet-0.5x | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 48ms | 42ms |
+| PP-LCNet-0.75x | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 97ms | 66ms |
+| PP-LCNet-1x | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 136ms | 82ms |
+| [(Legacy) SENet-154](https://rwightman.github.io/pytorch-image-models/models/legacy-senet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 9974ms | 1857ms |
+| [(Legacy) SE-ResNet-152](https://rwightman.github.io/pytorch-image-models/models/legacy-se-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3766ms | 587ms |
+| [(Legacy) SE-ResNet-18](https://rwightman.github.io/pytorch-image-models/models/legacy-se-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 488ms | 66ms |
+| [(Legacy) SE-ResNet-34](https://rwightman.github.io/pytorch-image-models/models/legacy-se-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 880ms | 100ms |
+| [(Legacy) SE-ResNet-50](https://rwightman.github.io/pytorch-image-models/models/legacy-se-resnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1392ms | 248ms |
+| [(Legacy) SE-ResNeXt-26](https://rwightman.github.io/pytorch-image-models/models/legacy-se-resnext/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1209ms | 355ms |
+| [MnasNet-B1 depth multiplier 1.0](https://rwightman.github.io/pytorch-image-models/models/mnasnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 236ms | 64ms |
+| [MnasNet-Small depth multiplier 1.0](https://rwightman.github.io/pytorch-image-models/models/mnasnet/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 78ms | 33ms |
+| [MobileNet V2 with channel multiplier of 0.5](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 107ms | 16ms |
+| [MobileNet V2 with channel multiplier of 1.0](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 226ms | 21ms |
+| [MobileNet V2 with channel multiplier of 1.1](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 358ms | 27ms |
+| [MobileNet V2 with channel multiplier of 1.2](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 527ms | 34ms |
+| [MobileNet V2 with channel multiplier of 1.4](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v2/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 474ms | 29ms |
+| [MobileNet V3 Large 1.0](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 196ms | 92ms |
+| [MobileNet V3 Large 1.0, 21k pretraining](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 221ms | 101ms |
+| [MobileNet V3 (RW variant)](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 208ms | 92ms |
+| [MobileNet V3 Small 0.5](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 33ms | 31ms |
+| [MobileNet V3 Small 0.75](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 50ms | 39ms |
+| [MobileNet V3 Small 1.0](https://rwightman.github.io/pytorch-image-models/models/mobilenet-v3/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 62ms | 48ms |
+| [RegNetX 200MF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 192ms | 67ms |
+| [RegNetX 400MF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 294ms | 171ms |
+| [RegNetX 600MF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 426ms | 287ms |
+| [RegNetX 800MF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 514ms | 277ms |
+| [RegNetX 1.6GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1040ms | 657ms |
+| [RegNetX 3.2GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2412ms | 1838ms |
+| [RegNetX 4.0GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2847ms | 1692ms |
+| [RegNetX 6.4GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4990ms | 2919ms |
+| [RegNetX 8.0GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 5974ms | 4696ms |
+| [RegNetX 16GF](https://rwightman.github.io/pytorch-image-models/models/regnetx/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 13048ms | 4696ms |
+| [RegNetY 200MF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 204ms | 71ms |
+| [RegNetY 400MF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 306ms | 138ms |
+| [RegNetY 600MF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 506ms | 240ms |
+| [RegNetY 800MF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 577ms | 292ms |
+| [RegNetY 1.6GF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 1086ms | 734ms |
+| [RegNetY 4.0GF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3272ms | 2556ms |
+| [RegNetY 8.0GF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 3272ms | 2556ms |
+| [RegNetY 16GF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 12655ms | 8141ms |
+| [RegNetY 32GF](https://rwightman.github.io/pytorch-image-models/models/regnety/) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 24226ms | 17895ms |
+| [RepVGG-A2](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 2356ms | 79ms |
+| [RepVGG-B0](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 970ms | 68ms |
+| [RepVGG-B1](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4059ms | 115ms |
+| [RepVGG-B1g4](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 4025ms | 2386ms |
+| [RepVGG-B2](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 10556ms | 155ms |
+| [RepVGG-B2g4](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 8199ms | 3683ms |
+| [RepVGG-B3](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 12048ms | 189ms |
+| [RepVGG-B3g4](https://rwightman.github.io/pytorch-image-models/models/#repvgg-byobnetpy) | Classification | [pytorch-image-models](https://rwightman.github.io/pytorch-image-models) | 10102ms | 5250ms |
---
-[^1]: DRP-AI TVM is powered by EdgeCortix MERA™ Compiler Framework.
+[^1]: DRP-AI TVM is powered by EdgeCortix MERA™ Compiler Framework.
\ No newline at end of file
diff --git a/how-to/README.md b/how-to/README.md
index 1b64195..bc95753 100644
--- a/how-to/README.md
+++ b/how-to/README.md
@@ -21,21 +21,21 @@ This directory contains the solution to specific problems related to DRP-AI TVM[