Skip to content

Got an error when using lazy. #33

@SinoKiwi

Description

@SinoKiwi

I'm doing a NMT task.I use my own data loading function rather than using torch dataset.I got an "int object doesn't has attribute 'size' " error.
Here's my data loading code:

def get_batches(sz, pad=0):
    for i in range(0, len(datatmp), sz):
        n=0
        srcdata = []
        trgdata = []
        for j in range(n, sz):
            srcdata.append(datatmp[i+j][0])
            trgdata.append(datatmp[i+j][1])
        a = randint(1, 2)
        src_max_seq_length=max([len(srcdata[i]) for i in range(len(srcdata))])
        trg_max_seq_length=max([len(trgdata[i]) for i in range(len(trgdata))])
        # pad src to src_max_seq_length
        for i in range(len(srcdata)):
            srcdata[i] = srcdata[i] + [pad for j in range(src_max_seq_length-len(srcdata[i]))]
        #pad trg to trg_max_seq_length
        for i in range(len(trgdata)):
            trgdata[i] = trgdata[i] + [pad for j in range(trg_max_seq_length-len(trgdata[i]))]

        sr = np.ndarray(shape=(sz, src_max_seq_length))
        tg = np.ndarray(shape=(sz, trg_max_seq_length))
        for i in range(len(srcdata)):
            for j in range(len(srcdata[i])):
                sr[i][j] = srcdata[i][j]
        for i in range(len(trgdata)):
            for j in range(len(trgdata[i])):
                tg[i][j] = trgdata[i][j]
        #srcdata = np.array(srcdata)
        #trgdata = np.array(trgdata)
        srcdata = torch.from_numpy(sr)
        trgdata = torch.from_numpy(tg)
        src = Variable(srcdata, requires_grad=False).long()
        trg = Variable(trgdata, requires_grad=False).long()
        yield Batch(src, trg, pad)#Batch is only a simple class
class Batch:
    "Object for holding a batch of data with mask during training."
    def __init__(self, src, trg=None, pad=0):
        self.src = src
        self.src_mask = (src != pad).unsqueeze(-2)
        if trg is not None:
            self.trg = trg[:, :-1]
            self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg, pad)
            self.ntokens = (self.trg_y != pad).data.sum()
    
    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask

ps:The code is adapted from 'Annotated Transformer'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions