Skip to content

Latest commit

 

History

History
1388 lines (1182 loc) · 29.5 KB

Drugable_rxs_hgu133APlus2.md

File metadata and controls

1388 lines (1182 loc) · 29.5 KB
import cobra
hgu133APlus2_hela=cobra.io.read_sbml_model("Models/hgu133APlus2_hela_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_hacat=cobra.io.read_sbml_model("Models/hgu133APlus2_hacat_model_0418_DEMEM6429_n5.sbml")

hgu133APlus2_scc=cobra.io.read_sbml_model("Models/hgu133APlus2_cancer_model_0418_westDiet_n5.sbml")
hgu133APlus2_normal=cobra.io.read_sbml_model("Models/hgu133APlus2_normal_model_0418_westDiet_n5.sbml")
import pandas as pd

def get_drugable_targets(normal_Model, disease_Model, model_name,  eps=0.1):
    Nids = [r.id for r in normal_Model.reactions]
    Dids = [r.id for r in disease_Model.reactions]
        
    nmodel=normal_Model.copy()
    dmodel=disease_Model.copy()

    common_rxs = list(set(Nids) & set(Dids))
    print("Common reactions size",len(common_rxs))
    unique_Nrx = list(set(Nids) - set(Dids))
    print("Normal unique reactions size",len(unique_Nrx))
    unique_Drx = list(set(Dids) - set(Nids))
    print("Disease unique reactions size",len(unique_Drx))

    nflx0=normal_Model.optimize().f
    dflx0=disease_Model.optimize().f

    
    results={}



    for rx in common_rxs:
        #print(rx)

        nbounds=nmodel.reactions.get_by_id(rx).bounds
        dbounds=dmodel.reactions.get_by_id(rx).bounds
        
        nmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
        dmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
                
        nfba=nmodel.optimize()    
        dfba=dmodel.optimize()
        
        nflx1=nfba.f
        dflx1=dfba.f
        
        results[rx]={}
        
        results[rx]["model"]=model_name
        
        results[rx]["norm_flux"]=nflx1
        results[rx]["dise_flux"]=dflx1
 
        results[rx]["norm_prolif_ratio"]=nflx1/nflx0
        results[rx]["dise_prolif_ratio"]=dflx1/dflx0
        
        results[rx]["norm_dise_ratio"]=(nflx1/nflx0)/(dflx1/dflx0)
        
        results[rx]["genes"]=normal_Model.reactions.get_by_id(rx).gene_name_reaction_rule

        
        nmodel.reactions.get_by_id(rx).bounds=nbounds
        dmodel.reactions.get_by_id(rx).bounds=dbounds

        
    for rx in unique_Nrx:
        #print(rx)
        
        nbounds=nmodel.reactions.get_by_id(rx).bounds
        
        nmodel.reactions.get_by_id(rx).bounds=(-eps,eps)      
        
        nfba=nmodel.optimize()    
        
        nflx1=nfba.f
        
        results[rx]={}
        
        results[rx]["model"]=model_name
        
        results[rx]["norm_flux"]=nflx1
        results[rx]["dise_flux"]=dflx0
 
        results[rx]["norm_prolif_ratio"]=nflx1/nflx0
        results[rx]["dise_prolif_ratio"]=dflx0
        
        results[rx]["norm_dise_ratio"]=nflx1/nflx0
        
        results[rx]["genes"]=normal_Model.reactions.get_by_id(rx).gene_name_reaction_rule

            
        nmodel.reactions.get_by_id(rx).bounds=nbounds
        
    for rx in unique_Drx:
        #print(rx)
        
        dbounds=dmodel.reactions.get_by_id(rx).bounds
    
        dmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
        dfba=dmodel.optimize()
        dflx1=dfba.f
        
        results[rx]={}

        results[rx]["model"]=model_name

        results[rx]["norm_flux"]=nflx0
        results[rx]["dise_flux"]=dflx1
 
        results[rx]["norm_prolif_ratio"]=nflx0
        results[rx]["dise_prolif_ratio"]=dflx1/dflx0
        
        results[rx]["norm_dise_ratio"]=1/(dflx1/dflx0)
        
        results[rx]["genes"]=disease_Model.reactions.get_by_id(rx).gene_name_reaction_rule

        dmodel.reactions.get_by_id(rx).bounds=dbounds


    return(pd.DataFrame(results).transpose())
R_clines=get_drugable_targets(hgu133APlus2_hacat, hgu133APlus2_hela, "hgu133APlus2_clines")
Common reactions size 2620
Normal unique reactions size 442
Disease unique reactions size 582
R_biopsys=get_drugable_targets(hgu133APlus2_normal, hgu133APlus2_scc, "hgu133APlus2_biopsys" )
Common reactions size 1963
Normal unique reactions size 524
Disease unique reactions size 614
R_biopsys
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
dise_flux dise_prolif_ratio genes model norm_dise_ratio norm_flux norm_prolif_ratio
10FTHF5GLUtl 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
10FTHF6GLUtl 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
10FTHF7GLUtl 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
10FTHFtl 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
10FTHFtm 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
12HTACRhr 0.216258 0.216258 HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
12HTACRitr 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
12HTACRtep 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
12HTACRtu 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
13DAMPPOX 0.216258 1 HGNC:549 or HGNC:550 or HGNC:80 hgu133APlus2_biopsys 1 0.128673 1
14HMDZALThr 0.216258 0.216258 HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
14HMDZhr 0.216258 0.216258 HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
14HMDZitr 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
14MDZtev 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
1OHMDZhr 0.216258 0.216258 HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
1OHMDZitr 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
1OHMDZtep 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
1PPDCRp 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
2AMADPTm 0.216258 1 HGNC:14411 hgu133APlus2_biopsys 1 0.128673 0.128673
2HATVACIDOXDhc 0.216258 0.216258 HGNC:2622 or HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
2HATVACIDitr 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
2HATVACIDtep 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
2HATVLACGLUChr 0.216258 0.216258 HGNC:12535 or HGNC:12536 hgu133APlus2_biopsys 1 0.128673 1
2HATVLACGLUCitr 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
2HATVLACGLUCteb 0.216258 0.216258 HGNC:40 or HGNC:53 hgu133APlus2_biopsys 1 0.128673 1
2HATVLACOXDhc 0.216258 0.216258 HGNC:2637 or HGNC:2638 hgu133APlus2_biopsys 1 0.128673 1
2HBO 0.216258 1 HGNC:21481 or HGNC:28335 or HGNC:30866 or (HGN... hgu133APlus2_biopsys 1 0.128673 1
2HBt2 0.216258 1 HGNC:10922 or HGNC:10924 or HGNC:10928 hgu133APlus2_biopsys 1 0.128673 0.128673
2MB2COAc 0.216258 1 HGNC:2690 hgu133APlus2_biopsys 1 0.128673 1
2OXOADOXm 0.216258 1 HGNC:21350 and HGNC:2898 and HGNC:2911 and HGN... hgu133APlus2_biopsys 1 0.128673 0.128673
... ... ... ... ... ... ... ...
r2344 0.216258 1 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 0.128673
r2353 0.216258 1 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 1
r2361 0.216258 0.216258 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 1
r2363 0.216258 0.216258 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 1
r2368 0.216258 1 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 0.128673
r2369 0.216258 1 HGNC:18057 hgu133APlus2_biopsys 1 0.128673 0.128673
r2372 0.216258 0.216258 HGNC:10979 hgu133APlus2_biopsys 1 0.128673 1
r2404 0.216258 0.216258 HGNC:22921 hgu133APlus2_biopsys 1 0.128673 1
r2419 0.216258 1 HGNC:10980 hgu133APlus2_biopsys 1 0.128673 0.128673
r2472 0.216258 1 HGNC:11024 hgu133APlus2_biopsys 1 0.128673 1
r2473 0.216258 1 HGNC:4061 hgu133APlus2_biopsys 1 0.128673 0.128673
r2505 0.216258 1 HGNC:51 hgu133APlus2_biopsys 1 0.128673 0.128673
r2508 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
r2509 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
r2511 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
r2513 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
r2514 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
r2516 0.216258 1 HGNC:10922 hgu133APlus2_biopsys 1 0.128673 0.128673
r2517 0.216258 1 HGNC:67 hgu133APlus2_biopsys 1 0.128673 0.128673
r2518 0.216258 1 HGNC:67 hgu133APlus2_biopsys 1 0.128673 0.128673
r2519 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
r2521 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
r2537 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
r2538 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
sink_citr_LPAREN_c_RPAREN_ 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1
sink_dd2coa_LPAREN_c_RPAREN_ 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
sink_octdececoa_LPAREN_c_RPAREN_ 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
sink_pre_prot_LPAREN_r_RPAREN_ 0.216258 1 hgu133APlus2_biopsys 1 0.128673 0.128673
sink_tetdece1coa_LPAREN_c_RPAREN_ 0.216258 0.216258 hgu133APlus2_biopsys 1 0.128673 1
xmpt 0.216258 1 hgu133APlus2_biopsys 1 0.128673 1

3101 rows × 7 columns

R_biopsys.to_csv("Drugable_targets_hgu133APlus2_biopsys.tsv",sep="\t")
R_clines.to_csv("Drugable_targets_hgu133APlus2_clines.tsv",sep="\t")
hgu133APlus2_biopsys =  R_biopsys
hgu133APlus2_clines  =  R_clines
hgu133APlus2_biopsys_drugable = hgu133APlus2_biopsys[ (hgu133APlus2_biopsys["norm_dise_ratio"] > 1.0000001) ].sort_values(by="norm_dise_ratio", ascending=False)
hgu133APlus2_clines_drugable = hgu133APlus2_clines[ (hgu133APlus2_clines["norm_dise_ratio"] > 1.0000001) ].sort_values(by="norm_dise_ratio", ascending=False)
hgu133APlus2_biopsys_drugable
Recon2.reactions.PCHOLPg_hs.name
Recon2.metabolites.pa_hs_g.name
hgu133APlus2_clines_drugable

reactionlist=["ACACT1x", "ADK1", "AGPAT1", "C14STRr", "C3STKR2r", "C4STMO1r", "CDIPTr", "CEPTC", "CHLPCTD", "CHOLK", "CLS_hs", "DMATTx", "ENO", "GAPD", "GK1", "GLCt4", "GPAM_hs", "GRTTx", "HISt4", "HMGCOARc","INSTt4", "IPDDIx", "LNSTLSr", "LYStiDF","OMPDC", "ORPT", "PGK", "PGM","r0463", "r0781", "r0787", "RPE", "SMS", "SQLEr", "TKT1", "TKT2"]

Recon2.reactions.GAPD.gene_reaction_rule
Recon2.reactions.GAPD.name
Recon2.reactions.PCHOLPg_hs.genes
Recon2.reactions.PCHOLPr_hs.genes
 Recon2.reactions.PCHOLP_hs.genes
Recon2.reactions.ACACT1x.gene_reaction_rule
# results={}
for rx in R_biopsys.index:
    rule=hgu133APlus2_scc.reactions.get_by_id(rx).gene_reaction_rule
    results[rx]={}
    results[rx]["TypeData"]="Biopsys_HGU133APlus2"
    results[rx]["norm_flux"]=R_biopsys.loc[rx]["norm_flux"]
    results[rx]["dise_flux"]=R_biopsys.loc[rx]["dise_flux"]
    results[rx]["norm_prolif_ratio"]=R_biopsys.loc[rx]["norm_prolif_ratio"]
    results[rx]["dise_prolif_ratio"]=R_biopsys.loc[rx]["dise_prolif_ratio"]
    results[rx]["norm_dise_ratio"]=R_biopsys.loc[rx]["norm_dise_ratio"]

results=pd.DataFrame(results).transpose()
results={}
for rx in R_clines[ R_clines["norm_dise_ratio"] > 1.2 ].index:
    rule=hgu133APlus2_hela.reactions.get_by_id(rx).gene_reaction_rule
    if(rule!=''):
        results[rx]={}
        results[rx]["Reaction"]=rx
        results[rx]["TypeData"]="cLines_HGU133APlus2"
        results[rx]["geneRule"]=rule
        results[rx]["norm_flux"]=R_clines.loc[rx]["norm_flux"]
        results[rx]["dise_flux"]=R_clines.loc[rx]["dise_flux"]
        results[rx]["norm_prolif_ratio"]=R_clines.loc[rx]["norm_prolif_ratio"]*100
        results[rx]["dise_prolif_ratio"]=R_clines.loc[rx]["dise_prolif_ratio"]*100
        results[rx]["norm_dise_ratio"]=R_clines.loc[rx]["norm_dise_ratio"]

pd.DataFrame(results).transpose()

#R_biopsys[ R_biopsys["norm_dise_ratio"] >1.1 ].sort_values(by="norm_dise_ratio", ascending=False)
FBA_hela = hgu133APlus2_hela.optimize()
FBA_hacat =hgu133APlus2_hacat.optimize()

FBA_scc = hgu133APlus2_scc.optimize()
FBA_normal = hgu133APlus2_normal.optimize()

print("Hela proliferation:",FBA_hela.f)
print("HaCaT proliferation:",FBA_hacat.f)
print("Scc proliferation:",FBA_scc.f)
print("Normal proliferation:",FBA_normal.f)



print("Hela TPI:",FBA_hela["TPI"])
print("HaCaT TPI:",FBA_hacat["TPI"])
print("Scc TPI:",FBA_scc["TPI"])
print("Normal TPI:",FBA_normal["TPI"])

hgu133APlus2_hela.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_hacat.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_scc.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_normal.reactions.TPI.bounds=(-.1,.1)

FBA_hela = hgu133APlus2_hela.optimize() FBA_hacat =hgu133APlus2_hacat.optimize()

FBA_scc = hgu133APlus2_scc.optimize() FBA_normal = hgu133APlus2_normal.optimize()

print("Hela proliferation:",FBA_hela.f) print("HaCaT proliferation:",FBA_hacat.f) print("Scc proliferation:",FBA_scc.f) print("Normal proliferation:",FBA_normal.f)

print("Hela TPI:",FBA_hela["TPI"]) print("HaCaT TPI:",FBA_hacat["TPI"]) print("Scc TPI:",FBA_scc["TPI"]) print("Normal TPI:",FBA_normal["TPI"])

hgu133APlus2_hela.reactions.PGM.reaction
import cobra
Recon2 = cobra.io.read_sbml_model("Models/recon2.2.xml")

hgu133A_hela=cobra.io.read_sbml_model("hgu133A_hela_model_0418_DEMEM6429_n5.sbml")
hgu133A_hacat=cobra.io.read_sbml_model("hgu133A_hacat_model_0418_DEMEM6429_n5.sbml")

hgu133A_scc=cobra.io.read_sbml_model("hgu133A_scc_model_0418_western_diet_n5.sbml")
hgu133A_normal=cobra.io.read_sbml_model("hgu133A_nc_model_0418_western_diet_n5.sbml")
R_clines=get_drugable_targets(hgu133A_hacat, hgu133A_hela, "hgu133A_clines",0.001)
R_biopsys=get_drugable_targets(hgu133A_normal, hgu133A_scc, "hgu133A_biopsys" ,0.001)

R_biopsys.to_csv("Drugable_targets_hgu133A_biopsys.tsv",sep="\t")
R_clines.to_csv("Drugable_targets_hgu133A_clines.tsv",sep="\t")
hgu133APlus2_biopsys =  pd.read_csv("Drugable_targets_hgu133APlus2_biopsys.tsv",sep="\t", index_col=0)
hgu133APlus2_clines  =  pd.read_csv("Drugable_targets_hgu133APlus2_clines.tsv",sep="\t", index_col=0)
hgu133A_biopsys      =  pd.read_csv("Drugable_targets_hgu133A_biopsys.tsv",sep="\t", index_col=0)
hgu133A_clines       =  pd.read_csv("Drugable_targets_hgu133A_clines.tsv",sep="\t", index_col=0)
hgu133A_clines_drugable = hgu133A_clines[ (hgu133A_clines["norm_dise_ratio"] > 1.0000001) & (hgu133A_clines["dise_flux"] < hgu133A_clines["norm_flux"])].sort_values(by="norm_dise_ratio", ascending=False)
hgu133A_biopsys_drugable = hgu133A_biopsys[ (hgu133A_biopsys["norm_dise_ratio"] > 1.0000001) & (hgu133A_biopsys["dise_flux"] < hgu133A_biopsys["norm_flux"])].sort_values(by="norm_dise_ratio", ascending=False)
hgu133A_clines_drugable
import itertools
import numpy as np

a = np.array(list(itertools.chain(hgu133APlus2_biopsys_drugable.index, hgu133APlus2_clines_drugable.index, hgu133A_clines_drugable.index, hgu133A_biopsys_drugable.index)))
u  = np.unique(a, return_index=False)
for rx in u:
    sets = Recon2.reactions.get_by_id(rx).genes
    if(list(sets)):
        print(Recon2.reactions.get_by_id(rx).id)
        print(list(sets))

ACACT1x HGNC:94 ADK1 HGNC:365,HGNC:361,HGNC:20091,HGNC:362 AGPAT1 HGNC:326,HGNC:324,HGNC:20886,HGNC:20885,HGNC:25193,HGNC:325,HGNC:20880 C14STRr HGNC:11863 C3STKR2r HGNC:5213 C4STMO1r HGNC:10545 CATm HGNC:1516 CLS_hs HGNC:16148 DMATTx HGNC:3631 ENO HGNC:3354,HGNC:3353,HGNC:3350 GAPD HGNC:24864,HGNC:4141 GLCt4 HGNC:23155,HGNC:11038,HGNC:22146,HGNC:23091,HGNC:28750,HGNC:11037 GPAM_hs HGNC:24865,HGNC:25193 GRTTx HGNC:3631 HISt4 HGNC:13448,HGNC:11047 HMGCOARc HGNC:5006 INSTt4 HGNC:11038 IPDDIx HGNC:5387,HGNC:23487 LNSTLSr HGNC:6708 LPASE HGNC:15449,HGNC:9035,HGNC:2014 LYStiDF HGNC:11057,HGNC:14679,HGNC:11060,HGNC:11061 OMPDC HGNC:12563 ORPT HGNC:12563 PGK HGNC:8896,HGNC:8898 PGM HGNC:1093,HGNC:8888,HGNC:8889 RPE HGNC:10293 SMS HGNC:29799 SQLEr HGNC:11279 TKT1 HGNC:11835,HGNC:11834,HGNC:25313 TKT2 HGNC:11835,HGNC:11834,HGNC:25313 r0463 HGNC:5007 r0781 HGNC:2649

Recon2.reactions.EX_h2o2_LPAREN_e_RPAREN_.reaction
hgu133APlus2_hela=cobra.io.read_sbml_model("Models/hgu133APlus2_hela_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_hacat=cobra.io.read_sbml_model("Models/hgu133APlus2_hacat_model_0418_DEMEM6429_n5.sbml")

hgu133APlus2_scc=cobra.io.read_sbml_model("Models/hgu133APlus2_cancer_model_0418_westDiet_n5.sbml")
hgu133APlus2_normal=cobra.io.read_sbml_model("Models/hgu133APlus2_normal_model_0418_westDiet_n5.sbml")
import pandas
from time import time

import cobra.test

from cobra.flux_analysis import (
    single_gene_deletion, single_reaction_deletion, double_gene_deletion,
    double_reaction_deletion)

deletion_results=single_reaction_deletion(hgu133APlus2_scc, hgu133APlus2_scc.reactions)

hgu133APlus2_scc_del = deletion_results[deletion_results.status != 'optimal']
hgu133APlus2_scc_del[hgu133APlus2_scc_del.status != 'optimal']
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
flux status
import pandas
from time import time

import cobra.test

from cobra.flux_analysis import (
    single_gene_deletion, single_reaction_deletion, double_gene_deletion,
    double_reaction_deletion)

deletion_results=single_reaction_deletion(hgu133APlus2_hacat, hgu133APlus2_hacat.reactions)

hgu133APlus2_hacat_del = deletion_results[deletion_results.status != 'optimal']
hgu133APlus2_hacat_del[hgu133APlus2_hacat_del.status != 'optimal']
<style> .dataframe thead tr:only-child th { text-align: right; }
.dataframe thead th {
    text-align: left;
}

.dataframe tbody tr th {
    vertical-align: top;
}
</style>
flux status
C14STRr 0.0 infeasible
C4STMO1r 0.0 infeasible
CDIPTr 0.0 infeasible
CHSTEROLtrc 0.0 infeasible
CLS_hs 0.0 infeasible
CO2ter 0.0 infeasible
DMATTx 0.0 infeasible
DSAT 0.0 infeasible
EX_lys_L_LPAREN_e_RPAREN_ 0.0 infeasible
EX_met_L_LPAREN_e_RPAREN_ 0.0 infeasible
EX_pglyc_hs_LPAREN_e_RPAREN_ 0.0 infeasible
EX_phe_L_LPAREN_e_RPAREN_ 0.0 infeasible
EX_pro_L_LPAREN_e_RPAREN_ 0.0 infeasible
EX_thr_L_LPAREN_e_RPAREN_ 0.0 infeasible
EX_trp_L_LPAREN_e_RPAREN_ 0.0 infeasible
FORtr 0.0 infeasible
FRDPtr 0.0 infeasible
GK1 0.0 infeasible
GRTTx 0.0 infeasible
HMGCOARc 0.0 infeasible
IPDDIx 0.0 infeasible
LNSTLSr 0.0 infeasible
LYStiDF 0.0 infeasible
O2ter 0.0 infeasible
PGI 0.0 infeasible
PGLYCt 0.0 infeasible
RE2675C 0.0 infeasible
SMS 0.0 infeasible
SQLEr 0.0 infeasible
biomass_DNA 0.0 infeasible
biomass_RNA 0.0 infeasible
biomass_carbohydrate 0.0 infeasible
biomass_lipid 0.0 infeasible
biomass_other 0.0 infeasible
biomass_protein 0.0 infeasible
r0781 0.0 infeasible
hgu133APlus2_scc
import numpy as np


main_list = np.setdiff1d(hgu133APlus2_hela_del.index,hgu133APlus2_hacat_del.index)

main_list
array(['AGPAT1', 'C3STKR2r', 'GPAM_hs'], dtype=object)