import cobra
hgu133APlus2_hela=cobra.io.read_sbml_model("Models/hgu133APlus2_hela_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_hacat=cobra.io.read_sbml_model("Models/hgu133APlus2_hacat_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_scc=cobra.io.read_sbml_model("Models/hgu133APlus2_cancer_model_0418_westDiet_n5.sbml")
hgu133APlus2_normal=cobra.io.read_sbml_model("Models/hgu133APlus2_normal_model_0418_westDiet_n5.sbml")
import pandas as pd
def get_drugable_targets(normal_Model, disease_Model, model_name, eps=0.1):
Nids = [r.id for r in normal_Model.reactions]
Dids = [r.id for r in disease_Model.reactions]
nmodel=normal_Model.copy()
dmodel=disease_Model.copy()
common_rxs = list(set(Nids) & set(Dids))
print("Common reactions size",len(common_rxs))
unique_Nrx = list(set(Nids) - set(Dids))
print("Normal unique reactions size",len(unique_Nrx))
unique_Drx = list(set(Dids) - set(Nids))
print("Disease unique reactions size",len(unique_Drx))
nflx0=normal_Model.optimize().f
dflx0=disease_Model.optimize().f
results={}
for rx in common_rxs:
#print(rx)
nbounds=nmodel.reactions.get_by_id(rx).bounds
dbounds=dmodel.reactions.get_by_id(rx).bounds
nmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
dmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
nfba=nmodel.optimize()
dfba=dmodel.optimize()
nflx1=nfba.f
dflx1=dfba.f
results[rx]={}
results[rx]["model"]=model_name
results[rx]["norm_flux"]=nflx1
results[rx]["dise_flux"]=dflx1
results[rx]["norm_prolif_ratio"]=nflx1/nflx0
results[rx]["dise_prolif_ratio"]=dflx1/dflx0
results[rx]["norm_dise_ratio"]=(nflx1/nflx0)/(dflx1/dflx0)
results[rx]["genes"]=normal_Model.reactions.get_by_id(rx).gene_name_reaction_rule
nmodel.reactions.get_by_id(rx).bounds=nbounds
dmodel.reactions.get_by_id(rx).bounds=dbounds
for rx in unique_Nrx:
#print(rx)
nbounds=nmodel.reactions.get_by_id(rx).bounds
nmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
nfba=nmodel.optimize()
nflx1=nfba.f
results[rx]={}
results[rx]["model"]=model_name
results[rx]["norm_flux"]=nflx1
results[rx]["dise_flux"]=dflx0
results[rx]["norm_prolif_ratio"]=nflx1/nflx0
results[rx]["dise_prolif_ratio"]=dflx0
results[rx]["norm_dise_ratio"]=nflx1/nflx0
results[rx]["genes"]=normal_Model.reactions.get_by_id(rx).gene_name_reaction_rule
nmodel.reactions.get_by_id(rx).bounds=nbounds
for rx in unique_Drx:
#print(rx)
dbounds=dmodel.reactions.get_by_id(rx).bounds
dmodel.reactions.get_by_id(rx).bounds=(-eps,eps)
dfba=dmodel.optimize()
dflx1=dfba.f
results[rx]={}
results[rx]["model"]=model_name
results[rx]["norm_flux"]=nflx0
results[rx]["dise_flux"]=dflx1
results[rx]["norm_prolif_ratio"]=nflx0
results[rx]["dise_prolif_ratio"]=dflx1/dflx0
results[rx]["norm_dise_ratio"]=1/(dflx1/dflx0)
results[rx]["genes"]=disease_Model.reactions.get_by_id(rx).gene_name_reaction_rule
dmodel.reactions.get_by_id(rx).bounds=dbounds
return(pd.DataFrame(results).transpose())
R_clines=get_drugable_targets(hgu133APlus2_hacat, hgu133APlus2_hela, "hgu133APlus2_clines")
Common reactions size 2620
Normal unique reactions size 442
Disease unique reactions size 582
R_biopsys=get_drugable_targets(hgu133APlus2_normal, hgu133APlus2_scc, "hgu133APlus2_biopsys" )
Common reactions size 1963
Normal unique reactions size 524
Disease unique reactions size 614
R_biopsys
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
dise_flux | dise_prolif_ratio | genes | model | norm_dise_ratio | norm_flux | norm_prolif_ratio | |
---|---|---|---|---|---|---|---|
10FTHF5GLUtl | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
10FTHF6GLUtl | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
10FTHF7GLUtl | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
10FTHFtl | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
10FTHFtm | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
12HTACRhr | 0.216258 | 0.216258 | HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
12HTACRitr | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
12HTACRtep | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
12HTACRtu | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
13DAMPPOX | 0.216258 | 1 | HGNC:549 or HGNC:550 or HGNC:80 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
14HMDZALThr | 0.216258 | 0.216258 | HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
14HMDZhr | 0.216258 | 0.216258 | HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
14HMDZitr | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
14MDZtev | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
1OHMDZhr | 0.216258 | 0.216258 | HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
1OHMDZitr | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
1OHMDZtep | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
1PPDCRp | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
2AMADPTm | 0.216258 | 1 | HGNC:14411 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
2HATVACIDOXDhc | 0.216258 | 0.216258 | HGNC:2622 or HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2HATVACIDitr | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
2HATVACIDtep | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
2HATVLACGLUChr | 0.216258 | 0.216258 | HGNC:12535 or HGNC:12536 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2HATVLACGLUCitr | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
2HATVLACGLUCteb | 0.216258 | 0.216258 | HGNC:40 or HGNC:53 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2HATVLACOXDhc | 0.216258 | 0.216258 | HGNC:2637 or HGNC:2638 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2HBO | 0.216258 | 1 | HGNC:21481 or HGNC:28335 or HGNC:30866 or (HGN... | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2HBt2 | 0.216258 | 1 | HGNC:10922 or HGNC:10924 or HGNC:10928 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
2MB2COAc | 0.216258 | 1 | HGNC:2690 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
2OXOADOXm | 0.216258 | 1 | HGNC:21350 and HGNC:2898 and HGNC:2911 and HGN... | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
... | ... | ... | ... | ... | ... | ... | ... |
r2344 | 0.216258 | 1 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2353 | 0.216258 | 1 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2361 | 0.216258 | 0.216258 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2363 | 0.216258 | 0.216258 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2368 | 0.216258 | 1 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2369 | 0.216258 | 1 | HGNC:18057 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2372 | 0.216258 | 0.216258 | HGNC:10979 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2404 | 0.216258 | 0.216258 | HGNC:22921 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2419 | 0.216258 | 1 | HGNC:10980 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2472 | 0.216258 | 1 | HGNC:11024 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
r2473 | 0.216258 | 1 | HGNC:4061 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2505 | 0.216258 | 1 | HGNC:51 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2508 | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2509 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2511 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2513 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
r2514 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
r2516 | 0.216258 | 1 | HGNC:10922 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2517 | 0.216258 | 1 | HGNC:67 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2518 | 0.216258 | 1 | HGNC:67 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 |
r2519 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2521 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2537 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
r2538 | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
sink_citr_LPAREN_c_RPAREN_ | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
sink_dd2coa_LPAREN_c_RPAREN_ | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
sink_octdececoa_LPAREN_c_RPAREN_ | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
sink_pre_prot_LPAREN_r_RPAREN_ | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 0.128673 | |
sink_tetdece1coa_LPAREN_c_RPAREN_ | 0.216258 | 0.216258 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 | |
xmpt | 0.216258 | 1 | hgu133APlus2_biopsys | 1 | 0.128673 | 1 |
3101 rows × 7 columns
R_biopsys.to_csv("Drugable_targets_hgu133APlus2_biopsys.tsv",sep="\t")
R_clines.to_csv("Drugable_targets_hgu133APlus2_clines.tsv",sep="\t")
hgu133APlus2_biopsys = R_biopsys
hgu133APlus2_clines = R_clines
hgu133APlus2_biopsys_drugable = hgu133APlus2_biopsys[ (hgu133APlus2_biopsys["norm_dise_ratio"] > 1.0000001) ].sort_values(by="norm_dise_ratio", ascending=False)
hgu133APlus2_clines_drugable = hgu133APlus2_clines[ (hgu133APlus2_clines["norm_dise_ratio"] > 1.0000001) ].sort_values(by="norm_dise_ratio", ascending=False)
hgu133APlus2_biopsys_drugable
Recon2.reactions.PCHOLPg_hs.name
Recon2.metabolites.pa_hs_g.name
hgu133APlus2_clines_drugable
reactionlist=["ACACT1x", "ADK1", "AGPAT1", "C14STRr", "C3STKR2r", "C4STMO1r", "CDIPTr", "CEPTC", "CHLPCTD", "CHOLK", "CLS_hs", "DMATTx", "ENO", "GAPD", "GK1", "GLCt4", "GPAM_hs", "GRTTx", "HISt4", "HMGCOARc","INSTt4", "IPDDIx", "LNSTLSr", "LYStiDF","OMPDC", "ORPT", "PGK", "PGM","r0463", "r0781", "r0787", "RPE", "SMS", "SQLEr", "TKT1", "TKT2"]
Recon2.reactions.GAPD.gene_reaction_rule
Recon2.reactions.GAPD.name
Recon2.reactions.PCHOLPg_hs.genes
Recon2.reactions.PCHOLPr_hs.genes
Recon2.reactions.PCHOLP_hs.genes
Recon2.reactions.ACACT1x.gene_reaction_rule
# results={}
for rx in R_biopsys.index:
rule=hgu133APlus2_scc.reactions.get_by_id(rx).gene_reaction_rule
results[rx]={}
results[rx]["TypeData"]="Biopsys_HGU133APlus2"
results[rx]["norm_flux"]=R_biopsys.loc[rx]["norm_flux"]
results[rx]["dise_flux"]=R_biopsys.loc[rx]["dise_flux"]
results[rx]["norm_prolif_ratio"]=R_biopsys.loc[rx]["norm_prolif_ratio"]
results[rx]["dise_prolif_ratio"]=R_biopsys.loc[rx]["dise_prolif_ratio"]
results[rx]["norm_dise_ratio"]=R_biopsys.loc[rx]["norm_dise_ratio"]
results=pd.DataFrame(results).transpose()
results={}
for rx in R_clines[ R_clines["norm_dise_ratio"] > 1.2 ].index:
rule=hgu133APlus2_hela.reactions.get_by_id(rx).gene_reaction_rule
if(rule!=''):
results[rx]={}
results[rx]["Reaction"]=rx
results[rx]["TypeData"]="cLines_HGU133APlus2"
results[rx]["geneRule"]=rule
results[rx]["norm_flux"]=R_clines.loc[rx]["norm_flux"]
results[rx]["dise_flux"]=R_clines.loc[rx]["dise_flux"]
results[rx]["norm_prolif_ratio"]=R_clines.loc[rx]["norm_prolif_ratio"]*100
results[rx]["dise_prolif_ratio"]=R_clines.loc[rx]["dise_prolif_ratio"]*100
results[rx]["norm_dise_ratio"]=R_clines.loc[rx]["norm_dise_ratio"]
pd.DataFrame(results).transpose()
#R_biopsys[ R_biopsys["norm_dise_ratio"] >1.1 ].sort_values(by="norm_dise_ratio", ascending=False)
FBA_hela = hgu133APlus2_hela.optimize()
FBA_hacat =hgu133APlus2_hacat.optimize()
FBA_scc = hgu133APlus2_scc.optimize()
FBA_normal = hgu133APlus2_normal.optimize()
print("Hela proliferation:",FBA_hela.f)
print("HaCaT proliferation:",FBA_hacat.f)
print("Scc proliferation:",FBA_scc.f)
print("Normal proliferation:",FBA_normal.f)
print("Hela TPI:",FBA_hela["TPI"])
print("HaCaT TPI:",FBA_hacat["TPI"])
print("Scc TPI:",FBA_scc["TPI"])
print("Normal TPI:",FBA_normal["TPI"])
hgu133APlus2_hela.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_hacat.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_scc.reactions.TPI.bounds=(-.1,.1) hgu133APlus2_normal.reactions.TPI.bounds=(-.1,.1)
FBA_hela = hgu133APlus2_hela.optimize() FBA_hacat =hgu133APlus2_hacat.optimize()
FBA_scc = hgu133APlus2_scc.optimize() FBA_normal = hgu133APlus2_normal.optimize()
print("Hela proliferation:",FBA_hela.f) print("HaCaT proliferation:",FBA_hacat.f) print("Scc proliferation:",FBA_scc.f) print("Normal proliferation:",FBA_normal.f)
print("Hela TPI:",FBA_hela["TPI"]) print("HaCaT TPI:",FBA_hacat["TPI"]) print("Scc TPI:",FBA_scc["TPI"]) print("Normal TPI:",FBA_normal["TPI"])
hgu133APlus2_hela.reactions.PGM.reaction
import cobra
Recon2 = cobra.io.read_sbml_model("Models/recon2.2.xml")
hgu133A_hela=cobra.io.read_sbml_model("hgu133A_hela_model_0418_DEMEM6429_n5.sbml")
hgu133A_hacat=cobra.io.read_sbml_model("hgu133A_hacat_model_0418_DEMEM6429_n5.sbml")
hgu133A_scc=cobra.io.read_sbml_model("hgu133A_scc_model_0418_western_diet_n5.sbml")
hgu133A_normal=cobra.io.read_sbml_model("hgu133A_nc_model_0418_western_diet_n5.sbml")
R_clines=get_drugable_targets(hgu133A_hacat, hgu133A_hela, "hgu133A_clines",0.001)
R_biopsys=get_drugable_targets(hgu133A_normal, hgu133A_scc, "hgu133A_biopsys" ,0.001)
R_biopsys.to_csv("Drugable_targets_hgu133A_biopsys.tsv",sep="\t")
R_clines.to_csv("Drugable_targets_hgu133A_clines.tsv",sep="\t")
hgu133APlus2_biopsys = pd.read_csv("Drugable_targets_hgu133APlus2_biopsys.tsv",sep="\t", index_col=0)
hgu133APlus2_clines = pd.read_csv("Drugable_targets_hgu133APlus2_clines.tsv",sep="\t", index_col=0)
hgu133A_biopsys = pd.read_csv("Drugable_targets_hgu133A_biopsys.tsv",sep="\t", index_col=0)
hgu133A_clines = pd.read_csv("Drugable_targets_hgu133A_clines.tsv",sep="\t", index_col=0)
hgu133A_clines_drugable = hgu133A_clines[ (hgu133A_clines["norm_dise_ratio"] > 1.0000001) & (hgu133A_clines["dise_flux"] < hgu133A_clines["norm_flux"])].sort_values(by="norm_dise_ratio", ascending=False)
hgu133A_biopsys_drugable = hgu133A_biopsys[ (hgu133A_biopsys["norm_dise_ratio"] > 1.0000001) & (hgu133A_biopsys["dise_flux"] < hgu133A_biopsys["norm_flux"])].sort_values(by="norm_dise_ratio", ascending=False)
hgu133A_clines_drugable
import itertools
import numpy as np
a = np.array(list(itertools.chain(hgu133APlus2_biopsys_drugable.index, hgu133APlus2_clines_drugable.index, hgu133A_clines_drugable.index, hgu133A_biopsys_drugable.index)))
u = np.unique(a, return_index=False)
for rx in u:
sets = Recon2.reactions.get_by_id(rx).genes
if(list(sets)):
print(Recon2.reactions.get_by_id(rx).id)
print(list(sets))
ACACT1x HGNC:94 ADK1 HGNC:365,HGNC:361,HGNC:20091,HGNC:362 AGPAT1 HGNC:326,HGNC:324,HGNC:20886,HGNC:20885,HGNC:25193,HGNC:325,HGNC:20880 C14STRr HGNC:11863 C3STKR2r HGNC:5213 C4STMO1r HGNC:10545 CATm HGNC:1516 CLS_hs HGNC:16148 DMATTx HGNC:3631 ENO HGNC:3354,HGNC:3353,HGNC:3350 GAPD HGNC:24864,HGNC:4141 GLCt4 HGNC:23155,HGNC:11038,HGNC:22146,HGNC:23091,HGNC:28750,HGNC:11037 GPAM_hs HGNC:24865,HGNC:25193 GRTTx HGNC:3631 HISt4 HGNC:13448,HGNC:11047 HMGCOARc HGNC:5006 INSTt4 HGNC:11038 IPDDIx HGNC:5387,HGNC:23487 LNSTLSr HGNC:6708 LPASE HGNC:15449,HGNC:9035,HGNC:2014 LYStiDF HGNC:11057,HGNC:14679,HGNC:11060,HGNC:11061 OMPDC HGNC:12563 ORPT HGNC:12563 PGK HGNC:8896,HGNC:8898 PGM HGNC:1093,HGNC:8888,HGNC:8889 RPE HGNC:10293 SMS HGNC:29799 SQLEr HGNC:11279 TKT1 HGNC:11835,HGNC:11834,HGNC:25313 TKT2 HGNC:11835,HGNC:11834,HGNC:25313 r0463 HGNC:5007 r0781 HGNC:2649
Recon2.reactions.EX_h2o2_LPAREN_e_RPAREN_.reaction
hgu133APlus2_hela=cobra.io.read_sbml_model("Models/hgu133APlus2_hela_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_hacat=cobra.io.read_sbml_model("Models/hgu133APlus2_hacat_model_0418_DEMEM6429_n5.sbml")
hgu133APlus2_scc=cobra.io.read_sbml_model("Models/hgu133APlus2_cancer_model_0418_westDiet_n5.sbml")
hgu133APlus2_normal=cobra.io.read_sbml_model("Models/hgu133APlus2_normal_model_0418_westDiet_n5.sbml")
import pandas
from time import time
import cobra.test
from cobra.flux_analysis import (
single_gene_deletion, single_reaction_deletion, double_gene_deletion,
double_reaction_deletion)
deletion_results=single_reaction_deletion(hgu133APlus2_scc, hgu133APlus2_scc.reactions)
hgu133APlus2_scc_del = deletion_results[deletion_results.status != 'optimal']
hgu133APlus2_scc_del[hgu133APlus2_scc_del.status != 'optimal']
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
flux | status |
---|
import pandas
from time import time
import cobra.test
from cobra.flux_analysis import (
single_gene_deletion, single_reaction_deletion, double_gene_deletion,
double_reaction_deletion)
deletion_results=single_reaction_deletion(hgu133APlus2_hacat, hgu133APlus2_hacat.reactions)
hgu133APlus2_hacat_del = deletion_results[deletion_results.status != 'optimal']
hgu133APlus2_hacat_del[hgu133APlus2_hacat_del.status != 'optimal']
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
flux | status | |
---|---|---|
C14STRr | 0.0 | infeasible |
C4STMO1r | 0.0 | infeasible |
CDIPTr | 0.0 | infeasible |
CHSTEROLtrc | 0.0 | infeasible |
CLS_hs | 0.0 | infeasible |
CO2ter | 0.0 | infeasible |
DMATTx | 0.0 | infeasible |
DSAT | 0.0 | infeasible |
EX_lys_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_met_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_pglyc_hs_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_phe_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_pro_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_thr_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
EX_trp_L_LPAREN_e_RPAREN_ | 0.0 | infeasible |
FORtr | 0.0 | infeasible |
FRDPtr | 0.0 | infeasible |
GK1 | 0.0 | infeasible |
GRTTx | 0.0 | infeasible |
HMGCOARc | 0.0 | infeasible |
IPDDIx | 0.0 | infeasible |
LNSTLSr | 0.0 | infeasible |
LYStiDF | 0.0 | infeasible |
O2ter | 0.0 | infeasible |
PGI | 0.0 | infeasible |
PGLYCt | 0.0 | infeasible |
RE2675C | 0.0 | infeasible |
SMS | 0.0 | infeasible |
SQLEr | 0.0 | infeasible |
biomass_DNA | 0.0 | infeasible |
biomass_RNA | 0.0 | infeasible |
biomass_carbohydrate | 0.0 | infeasible |
biomass_lipid | 0.0 | infeasible |
biomass_other | 0.0 | infeasible |
biomass_protein | 0.0 | infeasible |
r0781 | 0.0 | infeasible |
hgu133APlus2_scc
import numpy as np
main_list = np.setdiff1d(hgu133APlus2_hela_del.index,hgu133APlus2_hacat_del.index)
main_list
array(['AGPAT1', 'C3STKR2r', 'GPAM_hs'], dtype=object)