-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathconvex_hull.scad
200 lines (166 loc) · 6.74 KB
/
convex_hull.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
//////////////////////////////////////////////////////////////////////
// LibFile: convex_hull.scad
// Functions to create 2D and 3D convex hulls.
// To use, add the following line to the beginning of your file:
// ```
// include <BOSL/convex_hull.scad>
// ```
// Derived from Linde's Hull:
// - https://github.com/openscad/scad-utils
//////////////////////////////////////////////////////////////////////
include <BOSL/math.scad>
// Section: Generalized Hull
// Function: convex_hull()
// Usage:
// convex_hull(points)
// Description:
// When given a list of 3D points, returns a list of faces for
// the minimal convex hull polyhedron of those points. Each face
// is a list of indexes into `points`.
// When given a list of 2D points, or 3D points that are all
// coplanar, returns a list of indices into `points` for the path
// that forms the minimal convex hull polygon of those points.
// Arguments:
// points = The list of points to find the minimal convex hull of.
function convex_hull(points) =
!(len(points) > 0) ? [] :
len(points[0]) == 2 ? convex_hull2d(points) :
len(points[0]) == 3 ? convex_hull3d(points) : [];
// Section: 2D Hull
// Function: convex_hull2d()
// Usage:
// convex_hull2d(points)
// Description:
// Takes a list of arbitrary 2D points, and finds the minimal convex
// hull polygon to enclose them. Returns a path as a list of indices
// into `points`.
function convex_hull2d(points) =
(len(points) < 3)? [] : let(
a=0, b=1,
c = _find_first_noncollinear([a,b], points, 2)
) (c == len(points))? _convex_hull_collinear(points) : let(
remaining = [ for (i = [2:len(points)-1]) if (i != c) i ],
ccw = triangle_area2d(points[a], points[b], points[c]) > 0,
polygon = ccw? [a,b,c] : [a,c,b]
) _convex_hull_iterative_2d(points, polygon, remaining);
// Adds the remaining points one by one to the convex hull
function _convex_hull_iterative_2d(points, polygon, remaining, _i=0) =
(_i >= len(remaining))? polygon : let (
// pick a point
i = remaining[_i],
// find the segments that are in conflict with the point (point not inside)
conflicts = _find_conflicting_segments(points, polygon, points[i])
// no conflicts, skip point and move on
) (len(conflicts) == 0)? _convex_hull_iterative_2d(points, polygon, remaining, _i+1) : let(
// find the first conflicting segment and the first not conflicting
// conflict will be sorted, if not wrapping around, do it the easy way
polygon = _remove_conflicts_and_insert_point(polygon, conflicts, i)
) _convex_hull_iterative_2d(points, polygon, remaining, _i+1);
function _find_first_noncollinear(line, points, i) =
(i>=len(points) || !collinear_indexed(points, line[0], line[1], i))? i :
_find_first_noncollinear(line, points, i+1);
function _find_conflicting_segments(points, polygon, point) = [
for (i = [0:len(polygon)-1]) let(
j = (i+1) % len(polygon),
p1 = points[polygon[i]],
p2 = points[polygon[j]],
area = triangle_area2d(p1, p2, point)
) if (area < 0) i
];
// remove the conflicting segments from the polygon
function _remove_conflicts_and_insert_point(polygon, conflicts, point) =
(conflicts[0] == 0)? let(
nonconflicting = [ for(i = [0:len(polygon)-1]) if (!in_list(i, conflicts)) i ],
new_indices = concat(nonconflicting, (nonconflicting[len(nonconflicting)-1]+1) % len(polygon)),
polygon = concat([ for (i = new_indices) polygon[i] ], point)
) polygon : let(
before_conflicts = [ for(i = [0:min(conflicts)]) polygon[i] ],
after_conflicts = (max(conflicts) >= (len(polygon)-1))? [] : [ for(i = [max(conflicts)+1:len(polygon)-1]) polygon[i] ],
polygon = concat(before_conflicts, point, after_conflicts)
) polygon;
// Section: 3D Hull
// Function: convex_hull3d()
// Usage:
// convex_hull3d(points)
// Description:
// Takes a list of arbitrary 3D points, and finds the minimal convex
// hull polyhedron to enclose them. Returns a list of faces, where
// each face is a list of indexes into the given `points` list.
// If all points passed to it are coplanar, then the return is the
// list of indices of points forming the minimal convex hull polygon.
function convex_hull3d(points) =
(len(points) < 3)? list_range(len(points)) : let (
// start with a single triangle
a=0, b=1, c=2,
plane = plane3pt_indexed(points, a, b, c),
d = _find_first_noncoplanar(plane, points, 3)
) (d == len(points))? /* all coplanar*/ let (
pts2d = [ for (p = points) xyz_to_planar(p, points[a], points[b], points[c]) ],
hull2d = convex_hull2d(pts2d)
) hull2d : let(
remaining = [for (i = [3:len(points)-1]) if (i != d) i],
// Build an initial tetrahedron.
// Swap b, c if d is in front of triangle t.
ifop = in_front_of_plane(plane, points[d]),
bc = ifop? [c,b] : [b,c],
b = bc[0],
c = bc[1],
triangles = [
[a,b,c],
[d,b,a],
[c,d,a],
[b,d,c]
],
// calculate the plane equations
planes = [ for (t = triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _convex_hull_iterative(points, triangles, planes, remaining);
// Adds the remaining points one by one to the convex hull
function _convex_hull_iterative(points, triangles, planes, remaining, _i=0) =
_i >= len(remaining) ? triangles :
let (
// pick a point
i = remaining[_i],
// find the triangles that are in conflict with the point (point not inside)
conflicts = _find_conflicts(points[i], planes),
// for all triangles that are in conflict, collect their halfedges
halfedges = [
for(c = conflicts, i = [0:2]) let(
j = (i+1)%3
) [triangles[c][i], triangles[c][j]]
],
// find the outer perimeter of the set of conflicting triangles
horizon = _remove_internal_edges(halfedges),
// generate a new triangle for each horizon halfedge together with the picked point i
new_triangles = [ for (h = horizon) concat(h,i) ],
// calculate the corresponding plane equations
new_planes = [ for (t = new_triangles) plane3pt_indexed(points, t[0], t[1], t[2]) ]
) _convex_hull_iterative(
points,
// remove the conflicting triangles and add the new ones
concat(list_remove(triangles, conflicts), new_triangles),
concat(list_remove(planes, conflicts), new_planes),
remaining,
_i+1
);
function _convex_hull_collinear(points) =
let(
a = points[0],
n = points[1] - a,
points1d = [ for(p = points) (p-a)*n ],
min_i = min_index(points1d),
max_i = max_index(points1d)
) [min_i, max_i];
function _remove_internal_edges(halfedges) = [
for (h = halfedges)
if (!in_list(reverse(h), halfedges))
h
];
function _find_conflicts(point, planes) = [
for (i = [0:len(planes)-1])
if (in_front_of_plane(planes[i], point))
i
];
function _find_first_noncoplanar(plane, points, i) =
(i >= len(points) || !coplanar(plane, points[i]))? i :
_find_first_noncoplanar(plane, points, i+1);
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap