-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
61 lines (46 loc) · 1.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from torch_geometric.utils import add_self_loops
import numpy as np
import os
import sys
import torch
import torch.nn as nn
from torch_geometric.loader import DataLoader
from src.utils import AslUtils
from src.dataset import AslDataset
from Model.model import BaseModel
from src.train import TrainModel
import mediapipe as mp
import cv2
import pandas as pd
mp_hands = mp.solutions.hands
path = os.getcwd()
sys.path.append(path)
csv_path = "Data\CSV"
save_path = "Data\raw"
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
utils = AslUtils()
utils.create_train_csv(csv_path)
utils.concat_all_csv(csv_path, save_path)
root_pt_path = os.path.join(path, "Data/")
train_ds = AslDataset(root_pt_path, "train.csv", test=False)
val_ds = AslDataset(root_pt_path, "test.csv", test=True)
train_dl = DataLoader(train_ds, batch_size=32, shuffle=True)
test_dl = DataLoader(val_ds, batch_size=1, shuffle=True)
model = BaseModel(3, 64, 32, 28).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
trainmodel = TrainModel(model, criterion, optimizer)
num_epochs = 100
train_losses = []
train_acc = []
test_losses = []
test_acc = []
for epoch in range(num_epochs):
loss, acc = trainmodel.train_one_epoch(train_dl)
train_losses.append(loss)
train_acc.append(acc)
print(f'Epoch : {epoch} | Train_Loss :{loss} | Accuracy :{acc}')
loss, acc = trainmodel.test_one_epoch(test_dl)
test_losses.append(loss)
test_acc.append(acc)
print(f'Epoch : {epoch} | Test_Loss :{loss} | Accuracy :{acc}')