-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag_app.py
95 lines (78 loc) · 2.88 KB
/
rag_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
from langchain_community.embeddings import OllamaEmbeddings
import chainlit as cl
import PyPDF2
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from langchain.text_splitter import RecursiveCharacterTextSplitter
import pinecone
from langchain_pinecone import Pinecone
from langchain_community.chat_models import ChatOllama
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=100)
HUGGINGFACEHUB_API_TOKEN = os.environ['HUGGINGFACEHUB_API_TOKEN']
PINECONE_API_KEY = os.environ['PINECONE_API_KEY']
PINECONE_API_ENV = os.environ['PINECONE_API_ENV']
@cl.on_chat_start
async def on_chat_start():
files = None
while files is None:
files = await cl.AskFileMessage(
content="Please upload a pdf file",
accept=['application/pdf'],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f'Processing `{file.name}`...')
await msg.send()
# Read the PDF
pdf = PyPDF2.PdfReader(file.path)
text = ""
for page in pdf.pages:
text += page.extract_text()
texts = text_splitter.split_text(text)
embeddings = OllamaEmbeddings(model="mistral")
pc = pinecone.Pinecone(api_key=PINECONE_API_KEY, api_env=PINECONE_API_ENV)
index_name = 'chatpdf'
docsearch = await cl.make_async(Pinecone.from_texts)(
texts, embeddings, index_name=index_name)
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# print(docsearch.as_retriever())
chain = ConversationalRetrievalChain.from_llm(
ChatOllama(model="mistral"),
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
# cb = cl.AsyncLangchainCallbackHandler()
res = await chain.ainvoke(message.content)
answer = res['answer']
source_documents = res['source_documents']
text_elements = []
if source_documents:
for idx, doc in enumerate(source_documents):
source_name = f'source_{idx}'
text_elements.append(cl.Text(
content=doc.page_content,
name=source_name
))
source_names = [el.name for el in text_elements]
if source_names:
answer += f"\n Sources: {', '.join(source_names)}"
else:
answer += '\n No sources found'
await cl.Message(content=answer, elements=text_elements).send()