-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdashboard.py
286 lines (238 loc) · 13.2 KB
/
dashboard.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import gc
import helper
import constants
import pandas as pd
import gradio as gr
from haystack.pipelines import QuestionAnswerGenerationPipeline
from haystack.nodes import QuestionGenerator, FARMReader
import gc
from torch import cuda
gc.collect()
cuda.empty_cache()
selected_rows = []
def init_pipeline():
question_generator = QuestionGenerator(model_name_or_path='valhalla/t5-base-e2e-qg',
max_length=420, split_length=75,
split_overlap=20, use_gpu=True)
#qa_model = 'deepset/deberta-v3-large-squad2'
qa_model = 'deepset/roberta-base-squad2'
reader = FARMReader(model_name_or_path=qa_model,
top_k=1, use_gpu=True)
pipeline = QuestionAnswerGenerationPipeline(question_generator, reader)
return pipeline
def upload_csv(topic, file, labels, data_source, subject_filter):
"""
Load CSV to Elasticsearch document store and apply zero shot classification.
"""
print('Uploading CSV')
gr.Info(f'Uploading file to Elasticsearch. Please wait.')
if subject_filter != '':
if subject_filter == 'Physics (All)':
docs = helper.csv_to_doc(path=constants.PHYSICS_CSV, source='subject',
content='content')
elif subject_filter == 'Chemistry (All)':
docs = helper.csv_to_doc(path=constants.CHEMISTRY_CSV, source='subject',
content='content')
elif subject_filter == 'Biology (All)':
docs = helper.csv_to_doc(path=constants.BIOLOGY_CSV, source='subject',
content='content')
elif subject_filter == 'Economics (All)':
docs = helper.csv_to_doc(path=constants.ECONOMICS_CSV, source='subject',
content='content')
elif subject_filter == 'Physical Science (All)':
docs = helper.csv_to_doc(path=constants.PHYSICAL_SCIENCE_CSV, source='subject',
content='content')
# Change options to source + subject combination.
if data_source == 'OpenStax.org (Biology)':
#docs = helper.openstax_to_doc(path=file.name)
docs = helper.csv_to_doc(path=constants.BIOLOGY_OSTAX_CSV, title='summary_heading',
subject='subject', content='summary_text')
elif data_source == 'CK12.org (Biology)':
docs = helper.csv_to_doc(path=constants.BIOLOGY_CK12_CSV, title='title',
subject='subject', content='content')
elif data_source == 'Brightstorm (Biology)':
docs = helper.csv_to_doc(path=constants.BIOLOGY_BSTORM_CSV, title='title',
subject='subject', content='summary')
elif data_source == 'Others (Biology)':
docs = helper.csv_to_doc(path=file.name, source='others', title='', subject='',
content='content')
'''
if data_source == 'OpenStax.org':
#docs = helper.openstax_to_doc(path=file.name)
docs = helper.csv_to_doc(path=file.name, title='summary_heading',
subject='subject', content='summary_text')
elif data_source == 'CK12.org':
docs = helper.csv_to_doc(path=file.name, title='title',
subject='subject', content='content')
elif data_source == 'Brightstorm':
docs = helper.csv_to_doc(path=file.name, title='title',
subject='subject', content='summary')
elif data_source == 'Others':
docs = helper.csv_to_doc(path=file.name, source='others', title='', subject='',
content='content')
'''
doc_store = helper.add_to_docstore(docs, index=topic, delete_docs=True)
if labels != '':
labels = helper.split_labels(labels)
doc_store = helper.classify_docs(labels=labels, doc_store=doc_store, index=topic)
return [gr.update(value=f'CSV added to Elasticsearch under {topic}.\nLabels added.',
visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True)]
return [gr.update(value=f'CSV added to Elasticsearch under {topic}.', visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True)]
def generate_qa_pairs(topic: str, retrieval_query: str, emb_retrieval_query: str, zero_shot_query: str):
"""
Generate QA pair on the uploaded CSV.
If query passed, filter documents based on BM25 retrieval, embedding based retrieval
or filtered on the basis of generated Zero Shot label.
Save generated QA pairs to CSV.
"""
print('Generating QA Pairs')
gr.Info('Generating QA Pairs. Please wait.')
retrieval_flag = False
emb_retrieval_flag = False
zero_shot_flag = False
global selected_rows
selected_rows = []
if retrieval_query == '' and emb_retrieval_query == '' and zero_shot_query == '':
retrieval_flag = False
docs = helper.load_all_docs(topic)
elif retrieval_query != '' and emb_retrieval_query == '':
retrieval_flag = True
docs = helper.load_bm25_docs(topic, retrieval_query)
elif emb_retrieval_query != '' and retrieval_query == '':
emb_retrieval_flag = True
docs = helper.load_embedded_docs(topic, emb_retrieval_query)
elif retrieval_query == '' and emb_retrieval_query == '' and zero_shot_query != '':
zero_shot_flag = True
docs = helper.load_zeroshot_docs(topic, zero_shot_query)
global df_gen_qa
pipeline = init_pipeline()
df_gen_qa = helper.run_pipeline(pipeline, docs)
path = f'data/{topic}_generated_QA.csv'
df_gen_qa.to_csv(path, index=False)
kwargs = {'retrieval_flag': retrieval_flag, 'emb_retrieval_flag': emb_retrieval_flag,
'zero_shot_flag': zero_shot_flag, 'retrieval_query': retrieval_query,
'emb_retrieval_query': emb_retrieval_query, 'zero_shot_query': zero_shot_query}
qa_output_str = helper.prepare_qa_string(df_gen_qa, **kwargs)
# Dataframe that would contain selected rows
# Initialized here to clean it before QA generated
df_rows = pd.DataFrame(columns=['generated_question', 'generated_answer', 'document_context'])
#path = f'data/{topic}_selected_QA.csv'
#df_rows.to_csv(path, index=False)
del pipeline
gc.collect()
return [gr.update(value=qa_output_str, visible=True),
gr.update(value=path, visible=True),
gr.update(value=df_gen_qa, visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(value=df_rows, visible=True)]
def generate_distractors(topic, distractor_count):
gc.collect()
#df = pd.read_csv(file.name)
df = pd.read_csv(constants.SELECTED_ROWS_CSV)
df = df.drop(labels='document_context', axis=1)
print('Generating distractors')
distractor_count = int(distractor_count)
gc.collect()
# Rare usage, importing here to prevent memory overload by Word2Vec and LLMs simultaneously
import distractor_generation
gr.Info('Generating distractors')
df['distractors'] = df['generated_answer'].apply(lambda x:
distractor_generation.generate_disctractors(answer=x,
distractor_count=distractor_count))
# Convert string numeric answer with int numeric answer
df['generated_answer'] = df['generated_answer'].apply(lambda x: distractor_generation.convert_numeric_answer(answer=x))
# Code taken from https://stackoverflow.com/questions/43752845/list-of-values-to-columns-in-pandas-dataframe
df_distractor = pd.DataFrame(df['distractors'].values.tolist()).add_prefix(constants.COL_PREFIX)
df_distractor = df_distractor.join(df[constants.DIST_COLS])
# Reorder columns
df_distractor = df_distractor[constants.DIST_COLS+[constants.COL_PREFIX+str(_) for _ in range(distractor_count)]]
path = f'data/{topic}_gen_QA_distractor.csv'
df_distractor.to_csv(path, index=False)
return [gr.update(value=path, visible=True), gr.update(value=path, visible=True)]
def change_label(topic):
# Change label based on input from user.
return gr.update(label=f'Add {topic} CSV')
def add_row(event: gr.SelectData):
"""
Save selected rows (from QA pair df) to CSV.
This helps in quicker filtering of data for researchers.
"""
print(f'{event.index[0]} row added')
selected_rows.append(event.index[0])
#selected_rows = list(set(selected_rows))
df_select = df_gen_qa.iloc[selected_rows, :]
#path = f'data/selected_data.csv'
df_select.to_csv(constants.SELECTED_ROWS_CSV, index=False)
return [gr.update(value=constants.SELECTED_ROWS_CSV), gr.update(value=constants.SELECTED_ROWS_CSV)]
def notify_subj_file(subject):
# Notify on subject change from dropdown
gr.Info(f'File added for {subject}, click upload to begin.')
def enable_upload(event: gr.SelectData):
if event.value == 'Others':
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
theme = gr.themes.Soft()
with gr.Blocks(css=constants.css, title=constants.tab_title, theme=theme) as dashboard:
gr.HTML(constants.page_title)
with gr.Row():
topic = gr.Textbox(label='Topic',
placeholder='openstax_biology, ck12_economics...')
data_source = gr.Dropdown(choices=['OpenStax.org (Biology)', 'CK12.org (Biology)',
'Brightstorm (Biology)', 'Others'],
label='Data Source')
subject_filter = gr.Dropdown(choices=['Physics (All)', 'Chemistry (All)', 'Biology (All)',
'Economics (All)', 'Physical Science (All)'],
label='Subject')
subject_filter.change(fn=notify_subj_file, inputs=subject_filter)
labels = gr.Textbox(label='Zero Shot Labels',
placeholder= 'Add labels (use , to split)')
file = gr.File(file_types=['csv'], label='Add CSV', visible=False)
topic.change(fn=change_label, inputs=topic, outputs=file)
data_source.select(fn=enable_upload, inputs=None, outputs=[file, subject_filter])
upload_btn = gr.Button('Add Data')
data_output_box = gr.Textbox(label='Data Upload Status', visible=False)
with gr.Row():
retrieval_query = gr.Textbox(label='Retrieval Query - BM25', placeholder='Enter query',
visible=False)
emb_retrieval_query = gr.Textbox(label='Retrieval Query - Embedding based', placeholder='Enter query',
visible=False)
zero_shot_query = gr.Textbox(label='Zero Shot Label', placeholder='Enter labels (use , to split)',
visible=False)
generate_qa_btn = gr.Button(f'Generate Question Answer Pairs', visible=False)
upload_btn.click(fn=upload_csv,
inputs=[topic, file, labels, data_source, subject_filter],
outputs=[data_output_box, generate_qa_btn, retrieval_query,
emb_retrieval_query, zero_shot_query])
qa_output_box = gr.Textbox(label='Generated QA Pairs Status', visible=False)
generated_file = gr.File(label='Generated CSV', visible=False)
df_output = gr.Dataframe(label='Generated QA Pairs', visible=False, wrap=True,
show_label=True, interactive=False)
selected_rows_file = gr.File(label='Selected Rows', visible=False)
df_rows = gr.DataFrame(label='Selected Rows', visible=False, wrap=True,
show_label=True, interactive=False)
#distractor_file = gr.File(label='Add CSV to generate distractors', visible=False, file_types=['csv'])
distractor_count = gr.Number(label='Distractor Answer Count', value=5 , visible=False)
generate_distr_btn = gr.Button(value='Generate Distractor Answers From Selected Rows', visible=False)
generated_distr_file = gr.File(label='Generated QA Distractor Answers CSV', visible=False)
generate_qa_btn.click(fn=generate_qa_pairs,
inputs=[topic, retrieval_query, emb_retrieval_query, zero_shot_query],
outputs=[qa_output_box, generated_file, df_output, selected_rows_file,
generate_distr_btn, distractor_count, df_rows])
df_output.select(fn=add_row, inputs=None, outputs=[selected_rows_file, df_rows])
df_distr = gr.DataFrame(label='Generated Distractor Answers', visible=False, wrap=True,
show_label=True, interactive=False)
generate_distr_btn.click(fn=generate_distractors,
inputs=[topic, distractor_count],
outputs=[generated_distr_file, df_distr])
dashboard.queue().launch(server_port=8080, share=False)