|
28 | 28 | "cell_type": "markdown", |
29 | 29 | "metadata": {}, |
30 | 30 | "source": [ |
31 | | - "## Define Parameters" |
| 31 | + "## Imports" |
32 | 32 | ] |
33 | 33 | }, |
34 | 34 | { |
|
37 | 37 | "metadata": {}, |
38 | 38 | "outputs": [], |
39 | 39 | "source": [ |
40 | | - "n_samples = 2**17\n", |
41 | | - "n_features = 500\n", |
42 | | - "\n", |
43 | | - "learning_rate = 0.001\n", |
44 | | - "algorithm = \"cyclic\"\n", |
45 | | - "random_state=23" |
| 40 | + "import cudf\n", |
| 41 | + "import numpy as np\n", |
| 42 | + "from cuml import make_regression, train_test_split\n", |
| 43 | + "from cuml.linear_model import ElasticNet as cuElasticNet, Lasso as cuLasso\n", |
| 44 | + "from cuml.metrics.regression import r2_score\n", |
| 45 | + "from sklearn.linear_model import ElasticNet as skElasticNet, Lasso as skLasso" |
46 | 46 | ] |
47 | 47 | }, |
48 | 48 | { |
49 | 49 | "cell_type": "markdown", |
50 | 50 | "metadata": {}, |
51 | 51 | "source": [ |
52 | | - "## Generate Data" |
| 52 | + "## Define Parameters" |
53 | 53 | ] |
54 | 54 | }, |
55 | 55 | { |
|
58 | 58 | "metadata": {}, |
59 | 59 | "outputs": [], |
60 | 60 | "source": [ |
61 | | - "import cudf\n", |
62 | | - "from cuml import make_regression\n", |
63 | | - "from cuml import train_test_split" |
| 61 | + "n_samples = 2**17\n", |
| 62 | + "n_features = 500\n", |
| 63 | + "\n", |
| 64 | + "learning_rate = 0.001\n", |
| 65 | + "algorithm = \"cyclic\"\n", |
| 66 | + "random_state=23" |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "markdown", |
| 71 | + "metadata": {}, |
| 72 | + "source": [ |
| 73 | + "## Generate Data" |
64 | 74 | ] |
65 | 75 | }, |
66 | 76 | { |
|
114 | 124 | "metadata": {}, |
115 | 125 | "outputs": [], |
116 | 126 | "source": [ |
117 | | - "import numpy as np\n", |
118 | | - "\n", |
119 | | - "from sklearn.linear_model import Lasso\n", |
120 | | - "\n", |
121 | | - "ols_sk = Lasso(alpha=np.array([learning_rate]),\n", |
122 | | - " fit_intercept = True,\n", |
123 | | - " normalize = False,\n", |
124 | | - " max_iter = 1000,\n", |
125 | | - " selection=algorithm,\n", |
126 | | - " tol=1e-10)\n", |
| 127 | + "%%time\n", |
| 128 | + "ols_sk = skLasso(alpha=np.array([learning_rate]),\n", |
| 129 | + " fit_intercept = True,\n", |
| 130 | + " normalize = False,\n", |
| 131 | + " max_iter = 1000,\n", |
| 132 | + " selection=algorithm,\n", |
| 133 | + " tol=1e-10)\n", |
127 | 134 | "\n", |
128 | | - "%time _ = ols_sk.fit(X_train, y_train)" |
| 135 | + "ols_sk.fit(X_train, y_train)" |
129 | 136 | ] |
130 | 137 | }, |
131 | 138 | { |
|
144 | 151 | "metadata": {}, |
145 | 152 | "outputs": [], |
146 | 153 | "source": [ |
147 | | - "from sklearn.metrics import r2_score\n", |
148 | | - "\n", |
149 | | - "r2_score_sk = r2_score(y_test, predict_sk)" |
| 154 | + "%%time\n", |
| 155 | + "r2_score_sk = r2_score(y_cudf_test, predict_sk)" |
150 | 156 | ] |
151 | 157 | }, |
152 | 158 | { |
|
164 | 170 | "metadata": {}, |
165 | 171 | "outputs": [], |
166 | 172 | "source": [ |
167 | | - "from cuml.linear_model import Lasso\n", |
168 | | - "\n", |
169 | | - "ols_cuml = Lasso(alpha=np.array([learning_rate]), \\\n", |
170 | | - " fit_intercept = True, \\\n", |
171 | | - " normalize = False, \\\n", |
172 | | - " max_iter = 1000, \\\n", |
173 | | - " selection=algorithm,\n", |
174 | | - " tol=1e-10)\n", |
| 173 | + "%%time\n", |
| 174 | + "ols_cuml = cuLasso(alpha=np.array([learning_rate]),\n", |
| 175 | + " fit_intercept = True,\n", |
| 176 | + " normalize = False,\n", |
| 177 | + " max_iter = 1000,\n", |
| 178 | + " selection=algorithm,\n", |
| 179 | + " tol=1e-10)\n", |
175 | 180 | "\n", |
176 | | - "%time _ = ols_cuml.fit(X_cudf, y_cudf)" |
| 181 | + "ols_cuml.fit(X_cudf, y_cudf)" |
177 | 182 | ] |
178 | 183 | }, |
179 | 184 | { |
|
192 | 197 | "metadata": {}, |
193 | 198 | "outputs": [], |
194 | 199 | "source": [ |
195 | | - "from cuml.metrics.regression import r2_score\n", |
196 | | - "\n", |
| 200 | + "%%time\n", |
197 | 201 | "r2_score_cuml = r2_score(y_cudf_test, predict_cuml)" |
198 | 202 | ] |
199 | 203 | }, |
|
236 | 240 | "metadata": {}, |
237 | 241 | "outputs": [], |
238 | 242 | "source": [ |
239 | | - "from sklearn.linear_model import ElasticNet\n", |
240 | | - "\n", |
241 | | - "elastic_sk = ElasticNet(alpha=np.array([learning_rate]),\n", |
242 | | - " fit_intercept = True,\n", |
243 | | - " normalize = False,\n", |
244 | | - " max_iter = 1000,\n", |
245 | | - " selection=algorithm,\n", |
246 | | - " tol=1e-10)\n", |
| 243 | + "%%time\n", |
| 244 | + "elastic_sk = skElasticNet(alpha=np.array([learning_rate]),\n", |
| 245 | + " fit_intercept = True,\n", |
| 246 | + " normalize = False,\n", |
| 247 | + " max_iter = 1000,\n", |
| 248 | + " selection=algorithm,\n", |
| 249 | + " tol=1e-10)\n", |
247 | 250 | "\n", |
248 | | - "%time _ = elastic_sk.fit(X_train, y_train)" |
| 251 | + "elastic_sk.fit(X_train, y_train)" |
249 | 252 | ] |
250 | 253 | }, |
251 | 254 | { |
|
264 | 267 | "metadata": {}, |
265 | 268 | "outputs": [], |
266 | 269 | "source": [ |
267 | | - "from sklearn.metrics import r2_score\n", |
268 | | - "\n", |
269 | | - "r2_score_elas_sk = r2_score(y_test, predict_elas_sk)" |
| 270 | + "%%time\n", |
| 271 | + "r2_score_elas_sk = r2_score(y_cudf_test, predict_elas_sk)" |
270 | 272 | ] |
271 | 273 | }, |
272 | 274 | { |
|
284 | 286 | "metadata": {}, |
285 | 287 | "outputs": [], |
286 | 288 | "source": [ |
287 | | - "from cuml.linear_model import ElasticNet\n", |
288 | | - "\n", |
289 | | - "elastic_cuml = ElasticNet(alpha=np.array([learning_rate]), \n", |
290 | | - " fit_intercept = True, \n", |
291 | | - " normalize = False, \n", |
292 | | - " max_iter = 1000, \n", |
293 | | - " selection=algorithm, \n", |
294 | | - " tol=1e-10)\n", |
| 289 | + "%%time\n", |
| 290 | + "elastic_cuml = cuElasticNet(alpha=np.array([learning_rate]), \n", |
| 291 | + " fit_intercept = True,\n", |
| 292 | + " normalize = False,\n", |
| 293 | + " max_iter = 1000,\n", |
| 294 | + " selection=algorithm,\n", |
| 295 | + " tol=1e-10)\n", |
295 | 296 | "\n", |
296 | | - "%time _ = elastic_cuml.fit(X_cudf, y_cudf)" |
| 297 | + "elastic_cuml.fit(X_cudf, y_cudf)" |
297 | 298 | ] |
298 | 299 | }, |
299 | 300 | { |
|
312 | 313 | "metadata": {}, |
313 | 314 | "outputs": [], |
314 | 315 | "source": [ |
315 | | - "from cuml.metrics.regression import r2_score\n", |
316 | | - "\n", |
| 316 | + "%%time\n", |
317 | 317 | "r2_score_elas_cuml = r2_score(y_cudf_test, predict_elas_cuml)" |
318 | 318 | ] |
319 | 319 | }, |
|
0 commit comments