|
| 1 | +"""This script creates a test which fails when |
| 2 | + saving/resuming a model is unsuccessful.""" |
| 3 | + |
| 4 | +import tempfile |
| 5 | + |
| 6 | +import numpy as np |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | +from torch.nn import functional as F |
| 10 | + |
| 11 | +from garage.envs import GymEnv, normalize |
| 12 | +from garage.experiment import deterministic, SnapshotConfig |
| 13 | +from garage.replay_buffer import PathBuffer |
| 14 | +from garage.sampler import FragmentWorker, LocalSampler |
| 15 | +from garage.torch import set_gpu_mode |
| 16 | +from garage.torch.algos import SAC |
| 17 | +from garage.torch.policies import TanhGaussianMLPPolicy |
| 18 | +from garage.torch.q_functions import ContinuousMLPQFunction |
| 19 | +from garage.trainer import Trainer |
| 20 | + |
| 21 | + |
| 22 | +@pytest.mark.mujoco |
| 23 | +def test_torch_cpu_resume_cpu(): |
| 24 | + """Test saving on CPU and resuming on CPU.""" |
| 25 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 26 | + snapshot_config = SnapshotConfig(snapshot_dir=temp_dir, |
| 27 | + snapshot_mode='last', |
| 28 | + snapshot_gap=1) |
| 29 | + env = normalize( |
| 30 | + GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) |
| 31 | + deterministic.set_seed(0) |
| 32 | + policy = TanhGaussianMLPPolicy( |
| 33 | + env_spec=env.spec, |
| 34 | + hidden_sizes=[32, 32], |
| 35 | + hidden_nonlinearity=torch.nn.ReLU, |
| 36 | + output_nonlinearity=None, |
| 37 | + min_std=np.exp(-20.), |
| 38 | + max_std=np.exp(2.), |
| 39 | + ) |
| 40 | + |
| 41 | + qf1 = ContinuousMLPQFunction(env_spec=env.spec, |
| 42 | + hidden_sizes=[32, 32], |
| 43 | + hidden_nonlinearity=F.relu) |
| 44 | + |
| 45 | + qf2 = ContinuousMLPQFunction(env_spec=env.spec, |
| 46 | + hidden_sizes=[32, 32], |
| 47 | + hidden_nonlinearity=F.relu) |
| 48 | + replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) |
| 49 | + trainer = Trainer(snapshot_config=snapshot_config) |
| 50 | + sampler = LocalSampler(agents=policy, |
| 51 | + envs=env, |
| 52 | + max_episode_length=env.spec.max_episode_length, |
| 53 | + worker_class=FragmentWorker) |
| 54 | + sac = SAC(env_spec=env.spec, |
| 55 | + policy=policy, |
| 56 | + qf1=qf1, |
| 57 | + qf2=qf2, |
| 58 | + sampler=sampler, |
| 59 | + gradient_steps_per_itr=100, |
| 60 | + replay_buffer=replay_buffer, |
| 61 | + min_buffer_size=1e3, |
| 62 | + target_update_tau=5e-3, |
| 63 | + discount=0.99, |
| 64 | + buffer_batch_size=64, |
| 65 | + reward_scale=1., |
| 66 | + steps_per_epoch=2) |
| 67 | + sac.has_lambda = lambda x: x + 1 |
| 68 | + trainer.setup(sac, env) |
| 69 | + set_gpu_mode(False) |
| 70 | + sac.to() |
| 71 | + trainer.setup(algo=sac, env=env) |
| 72 | + trainer.train(n_epochs=10, batch_size=100) |
| 73 | + trainer = Trainer(snapshot_config) |
| 74 | + trainer.restore(temp_dir) |
| 75 | + trainer.resume(n_epochs=20) |
| 76 | + |
| 77 | + |
| 78 | +@pytest.mark.gpu |
| 79 | +@pytest.mark.mujoco |
| 80 | +def test_torch_cpu_resume_gpu(): |
| 81 | + """Test saving on CPU and resuming on GPU.""" |
| 82 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 83 | + snapshot_config = SnapshotConfig(snapshot_dir=temp_dir, |
| 84 | + snapshot_mode='last', |
| 85 | + snapshot_gap=1) |
| 86 | + env = normalize( |
| 87 | + GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) |
| 88 | + deterministic.set_seed(0) |
| 89 | + policy = TanhGaussianMLPPolicy( |
| 90 | + env_spec=env.spec, |
| 91 | + hidden_sizes=[32, 32], |
| 92 | + hidden_nonlinearity=torch.nn.ReLU, |
| 93 | + output_nonlinearity=None, |
| 94 | + min_std=np.exp(-20.), |
| 95 | + max_std=np.exp(2.), |
| 96 | + ) |
| 97 | + |
| 98 | + qf1 = ContinuousMLPQFunction(env_spec=env.spec, |
| 99 | + hidden_sizes=[32, 32], |
| 100 | + hidden_nonlinearity=F.relu) |
| 101 | + |
| 102 | + qf2 = ContinuousMLPQFunction(env_spec=env.spec, |
| 103 | + hidden_sizes=[32, 32], |
| 104 | + hidden_nonlinearity=F.relu) |
| 105 | + replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) |
| 106 | + trainer = Trainer(snapshot_config=snapshot_config) |
| 107 | + sampler = LocalSampler(agents=policy, |
| 108 | + envs=env, |
| 109 | + max_episode_length=env.spec.max_episode_length, |
| 110 | + worker_class=FragmentWorker) |
| 111 | + sac = SAC(env_spec=env.spec, |
| 112 | + policy=policy, |
| 113 | + qf1=qf1, |
| 114 | + qf2=qf2, |
| 115 | + sampler=sampler, |
| 116 | + gradient_steps_per_itr=100, |
| 117 | + replay_buffer=replay_buffer, |
| 118 | + min_buffer_size=1e3, |
| 119 | + target_update_tau=5e-3, |
| 120 | + discount=0.99, |
| 121 | + buffer_batch_size=64, |
| 122 | + reward_scale=1., |
| 123 | + steps_per_epoch=2) |
| 124 | + sac.has_lambda = lambda x: x + 1 |
| 125 | + trainer.setup(sac, env) |
| 126 | + set_gpu_mode(False) |
| 127 | + sac.to() |
| 128 | + trainer.setup(algo=sac, env=env) |
| 129 | + trainer.train(n_epochs=10, batch_size=100) |
| 130 | + trainer = Trainer(snapshot_config) |
| 131 | + set_gpu_mode(True) |
| 132 | + trainer.restore(temp_dir) |
| 133 | + trainer.resume(n_epochs=20) |
| 134 | + |
| 135 | + |
| 136 | +@pytest.mark.gpu |
| 137 | +@pytest.mark.mujoco |
| 138 | +def test_torch_gpu_resume_cpu(): |
| 139 | + """Test saving on GPU and resuming on CPU.""" |
| 140 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 141 | + snapshot_config = SnapshotConfig(snapshot_dir=temp_dir, |
| 142 | + snapshot_mode='last', |
| 143 | + snapshot_gap=1) |
| 144 | + env = normalize( |
| 145 | + GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) |
| 146 | + deterministic.set_seed(0) |
| 147 | + policy = TanhGaussianMLPPolicy( |
| 148 | + env_spec=env.spec, |
| 149 | + hidden_sizes=[32, 32], |
| 150 | + hidden_nonlinearity=torch.nn.ReLU, |
| 151 | + output_nonlinearity=None, |
| 152 | + min_std=np.exp(-20.), |
| 153 | + max_std=np.exp(2.), |
| 154 | + ) |
| 155 | + |
| 156 | + qf1 = ContinuousMLPQFunction(env_spec=env.spec, |
| 157 | + hidden_sizes=[32, 32], |
| 158 | + hidden_nonlinearity=F.relu) |
| 159 | + |
| 160 | + qf2 = ContinuousMLPQFunction(env_spec=env.spec, |
| 161 | + hidden_sizes=[32, 32], |
| 162 | + hidden_nonlinearity=F.relu) |
| 163 | + replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) |
| 164 | + trainer = Trainer(snapshot_config=snapshot_config) |
| 165 | + sampler = LocalSampler(agents=policy, |
| 166 | + envs=env, |
| 167 | + max_episode_length=env.spec.max_episode_length, |
| 168 | + worker_class=FragmentWorker) |
| 169 | + sac = SAC(env_spec=env.spec, |
| 170 | + policy=policy, |
| 171 | + qf1=qf1, |
| 172 | + qf2=qf2, |
| 173 | + sampler=sampler, |
| 174 | + gradient_steps_per_itr=100, |
| 175 | + replay_buffer=replay_buffer, |
| 176 | + min_buffer_size=1e3, |
| 177 | + target_update_tau=5e-3, |
| 178 | + discount=0.99, |
| 179 | + buffer_batch_size=64, |
| 180 | + reward_scale=1., |
| 181 | + steps_per_epoch=2) |
| 182 | + sac.has_lambda = lambda x: x + 1 |
| 183 | + trainer.setup(sac, env) |
| 184 | + set_gpu_mode(True) |
| 185 | + sac.to() |
| 186 | + trainer.setup(algo=sac, env=env) |
| 187 | + trainer.train(n_epochs=10, batch_size=100) |
| 188 | + set_gpu_mode(False) |
| 189 | + trainer = Trainer(snapshot_config) |
| 190 | + trainer.restore(temp_dir) |
| 191 | + trainer.resume(n_epochs=20) |
| 192 | + |
| 193 | + |
| 194 | +@pytest.mark.gpu |
| 195 | +@pytest.mark.mujoco |
| 196 | +def test_torch_gpu_resume_gpu(): |
| 197 | + """Test saving on GPU and resuming on GPU.""" |
| 198 | + with tempfile.TemporaryDirectory() as temp_dir: |
| 199 | + snapshot_config = SnapshotConfig(snapshot_dir=temp_dir, |
| 200 | + snapshot_mode='last', |
| 201 | + snapshot_gap=1) |
| 202 | + env = normalize( |
| 203 | + GymEnv('InvertedDoublePendulum-v2', max_episode_length=100)) |
| 204 | + deterministic.set_seed(0) |
| 205 | + policy = TanhGaussianMLPPolicy( |
| 206 | + env_spec=env.spec, |
| 207 | + hidden_sizes=[32, 32], |
| 208 | + hidden_nonlinearity=torch.nn.ReLU, |
| 209 | + output_nonlinearity=None, |
| 210 | + min_std=np.exp(-20.), |
| 211 | + max_std=np.exp(2.), |
| 212 | + ) |
| 213 | + |
| 214 | + qf1 = ContinuousMLPQFunction(env_spec=env.spec, |
| 215 | + hidden_sizes=[32, 32], |
| 216 | + hidden_nonlinearity=F.relu) |
| 217 | + |
| 218 | + qf2 = ContinuousMLPQFunction(env_spec=env.spec, |
| 219 | + hidden_sizes=[32, 32], |
| 220 | + hidden_nonlinearity=F.relu) |
| 221 | + replay_buffer = PathBuffer(capacity_in_transitions=int(1e6), ) |
| 222 | + trainer = Trainer(snapshot_config=snapshot_config) |
| 223 | + sampler = LocalSampler(agents=policy, |
| 224 | + envs=env, |
| 225 | + max_episode_length=env.spec.max_episode_length, |
| 226 | + worker_class=FragmentWorker) |
| 227 | + sac = SAC(env_spec=env.spec, |
| 228 | + policy=policy, |
| 229 | + qf1=qf1, |
| 230 | + qf2=qf2, |
| 231 | + sampler=sampler, |
| 232 | + gradient_steps_per_itr=100, |
| 233 | + replay_buffer=replay_buffer, |
| 234 | + min_buffer_size=1e3, |
| 235 | + target_update_tau=5e-3, |
| 236 | + discount=0.99, |
| 237 | + buffer_batch_size=64, |
| 238 | + reward_scale=1., |
| 239 | + steps_per_epoch=2) |
| 240 | + sac.has_lambda = lambda x: x + 1 |
| 241 | + trainer.setup(sac, env) |
| 242 | + set_gpu_mode(True) |
| 243 | + sac.to() |
| 244 | + trainer.setup(algo=sac, env=env) |
| 245 | + trainer.train(n_epochs=10, batch_size=100) |
| 246 | + trainer = Trainer(snapshot_config) |
| 247 | + trainer.restore(temp_dir) |
| 248 | + trainer.resume(n_epochs=20) |
0 commit comments