forked from olafSmits/MonteCarloMethodsInFinance
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_functions_iversity.py
206 lines (155 loc) · 6.61 KB
/
custom_functions_iversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from numpy.linalg import cholesky
from scipy.stats import norm
def graphicalComparisonPdf(X, modelPdf, scale = True, xMin = None, xMax = None, axes_object=None, nBins=None):
_X = X[np.logical_not(np.isnan(X))]
if xMax is None:
xMax = np.max(_X) # default parameter of xMax
if xMin is None:
xMin = np.min(_X) # default parameter of xMin
nPlot = 1000
xPlot = np.linspace(xMin, xMax, nPlot)
yPlot = modelPdf(xPlot)
if nBins is None:
nBins = np.min([np.sqrt(X.size), 40])
widthHistogram = np.max(_X)- np.min(_X)
averageHeightHistogram = _X.size/nBins
areaHistogram = widthHistogram*averageHeightHistogram
pdfScaleFactor = areaHistogram if not scale else 1
# if scale = False we rescale modelPDF(x) by the area of the histogram
# if scale = True the histogram is scaled, such that its area is 1 (as is the case for modelPDF(x))
if axes_object is None:
fig = plt.figure()
ax = fig.add_subplot(111)
else:
ax = axes_object
_, _, p = ax.hist(_X, bins=nBins, normed = scale)
l, = ax.plot(xPlot, yPlot * pdfScaleFactor, 'r', linewidth=3)
ax.set_xlabel('x')
ax.set_ylabel('pdf(x)')
ax.set_xlim(xMin, xMax)
if scale:
plt.legend([l, p[0]], ['pdf(x)', 'scaled histogram'], loc='best')
else:
plt.legend([l, p[0]], ['scaled pdf(x)', 'histogram'], loc='best')
return ax
def multivariateGaussianRand(M, mu, Sigma):
"""
multivariateGaussianRand: Generate random numbers from a D-dimensional Gaussian
INPUT:
M : size of the sample
mu : vector of means [D,1]
Sigma : covariance matrix [D,D]
OUTPUT:
Z : Sample from N(mu,Sigma) Gaussian [M,D]
"""
mu = np.asarray(mu)
Sigma = np.asarray(Sigma)
D = mu.size
L = cholesky(Sigma).T
## Generate M samples of D-dimensional vectors of independent Gaussians
X = np.random.randn(D, M)
## Transform vectors into vectors with proper mean and correlations
Z = mu[:, np.newaxis] + np.dot(L, X)
return Z.T
def priceAsianArithmeticMeanCallMC_withControlVariate(S0,K,r,T,sigma,M,N):
"""
priceOptionMC: Black-Scholes price of a generic option providing a payoff.
INPUT:
S0 : Initial value of the underlying asset
r : Risk-free interest rate
T : Time to expiry
sigma : Volatility
M : Number of simulations
N : Number of observations
payoff_function : payoff function of the option
OUTPUT:
price_MC : MC estimate of the price of the option in the Black-Scholes model
stdev_MC : MC estimate of the standard deviation
"""
## Generate M x N samples from N(0,1)
X = np.random.randn(M, N)
## Simulate M trajectories in N steps
deltaT = T / N
e = np.exp((r-0.5*sigma**2) * deltaT + sigma * np.sqrt(deltaT) * X)
S = np.cumprod(np.c_[S0 * np.ones((M,1)), e], axis=1)
def arithmeticMean(S):
S_mean = np.mean(S[:, 1:], 1)
return np.where(S_mean < K, 0, S_mean - K)
def geometricMean(S):
S_mean = np.exp(np.mean(np.log(S[:, 1:]), 1))
return np.where(S_mean < K, 0, S_mean - K)
payoff_ar, price_ar, std_ar = priceOptionMCWithSAsInput(S, r, T, M, arithmeticMean)
payoff_geom, price_geom, std_geom = priceOptionMCWithSAsInput(S, r, T, M, geometricMean)
price_geom_exact = priceAsianGeometricMeanCall(S0,K,r,T,sigma,N)
covarianceMatrix = np.cov(np.c_[payoff_ar, payoff_geom].T)
var_ar = covarianceMatrix[0,0]
var_geom = covarianceMatrix[1,1]
cov_ar_geom = covarianceMatrix[0,1]
corr_ar_geom = cov_ar_geom / np.sqrt(var_ar * var_geom)
price_MC = price_ar - cov_ar_geom / var_geom * (price_geom - price_geom_exact)
std_MC = std_ar * np.sqrt(1 - corr_ar_geom**2)
return price_MC, std_MC
def priceOptionMCWithSAsInput(S, r, T, M, payoff_function):
"""
priceOptionMC: Black-Scholes price of a generic option providing a payoff.
INPUT:
S : A set of pre-computed simulations of Brownian motion
r : Risk-free interest rate
M : Number of simulations
T : Time to maturity
payoff_function : payoff function of the option
OUTPUT:
price_MC : MC estimate of the price of the option in the Black-Scholes model
stdev_MC : MC estimate of the standard deviation
"""
## Compute the payoff for each trajectory
payoff = payoff_function(S)
## MC estimate of the price and the error of the option
discountFactor = np.exp(-r*T);
price_MC = discountFactor * np.mean(payoff)
stdev_MC = discountFactor * np.std(payoff)/np.sqrt(M)
return payoff, price_MC, stdev_MC
def priceAsianGeometricMeanCall(S0,K,r,T,sigma,N):
"""
priceAsianGeometricMeanCall: Price of a Asian call option on the geometric mean in the Black-Scholes model
INPUT:
S0 : Initial value of the underlying asset
K : Strike
r : Risk-free interest rate
T : Time to expiry
sigma : Volatility
N : Number of monitoring times
OUTPUT:
price : Price of the option in the Black-Scholes model
"""
## Auxiliary parameters
r_GM = 0.5 * (r * (N+1) / N - sigma**2 * (1.0 - 1.0/N**2) / 6.0)
sigma_GM = sigma * np.sqrt((2.0 * N**2 + 3.0 * N + 1.0) / (6.0 * N**2))
d_plus = np.log(S0/(K*np.exp(-r_GM*T)))/(sigma_GM*np.sqrt(T)) + sigma_GM*np.sqrt(T)/2.0
d_minus = d_plus - sigma_GM*np.sqrt(T)
## Pricing formula
price = np.exp(-r*T)*(S0*np.exp(r_GM*T)*norm.cdf(d_plus)-K*norm.cdf(d_minus))
return price
def priceEuropeanCall(S0, K, r, T, sigma):
"""
Price of a European call option in the Black-Scholes model
INPUT:
S0 : Initial value of the underlying asset
K : Strike
r : Risk-free interest rate
T : Time to expiry
sigma : Volatility
*args : extra arguments can be passed, but are not used
OUTPUT:
price : Price of the option in the Black-Scholes model
"""
discountedStrike = np.exp(-r * T) * K
totalVolatility = sigma * np.sqrt(T)
d_minus = np.log(S0 / discountedStrike) / totalVolatility - .5 * totalVolatility
d_plus = d_minus + totalVolatility
# The extra zero in the return is the variance in price, which is of course zero. This way the
# function behaves similar to the Monte Carlo methods defined below which have non-zero variance
return S0 * norm.cdf(d_plus) - discountedStrike * norm.cdf(d_minus)