-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Search before asking
- I have searched the Roboflow Notebooks issues and found no similar bug report.
Notebook name
Bug
Thank you for your excellent work. While attempting to fine-tune for a downstream detection task based on PaliGemma2, I noticed that the final training results produced many redundant bounding boxes. Based on the predictions, the model is capable of detecting the targets, but it continuously outputs additional bounding boxes until it reaches the set max-new-tokens
limit. Could you provide any insights or suggestions on this issue?
<loc0400><loc0516><loc0652><loc0712> 7 of clubs ; <loc0292><loc0300><loc0584><loc0512> 8 of clubs ; <loc0406><loc0724><loc0708><loc1007> 5 of clubs ; <loc0216><loc0084><loc0528><loc0316> 6 of clubs ; <loc0400><loc0516><loc0648><loc0708> 6 of clubs ; <loc0292><loc0295><loc0580><loc0512> 8 of clubs ; <loc0412><loc0732><loc0701><loc1007> 4 of clubs ; <loc0208><loc0080><loc0528><loc0316> 5 of clubs ; <loc0756><loc0136><loc1023><loc0316> 10 of clubs ; <loc0000><loc0000><loc1023><loc1016> 9 of clubs ; <loc0000><loc0000><loc0580><loc0540> 10 of clubs ; <loc0416><loc0540><loc0644><loc0708> 8 of clubs ; <loc0756><loc0144><loc0880><loc0292> 5 of clubs ; <loc0756><loc0144><loc1023><loc0322> 2 of clubs ; <loc0756><loc0144><loc1023><loc0316> 9 of clubs ; <loc0756><loc0144><loc1023><loc0316> 5 of clubs ; <loc0756><loc0144><loc1023><loc0305> 5 of clubs ; <loc0756><loc0144><loc1023><loc0305> 5 of clubs ; <loc0756><loc0144><loc1023><loc0295> 5 of clubs ; <loc0756><loc0232><loc1023><loc0322> 5 of clubs ; <loc0738><loc0000><loc1023><loc0136> 5 of clubs ; <loc0756><loc0000><loc1023><loc0136> 5 of clubs ; <loc0756><loc0000><loc1023><loc0136> 5 of clubs ; <loc0000><loc0000><loc0580><loc0372> 10 of clubs ; <loc0738><loc0000><loc1023><loc0136> 5 of clubs ; <loc0738><loc0000><loc1023>
Environment
- Local
- OS: Ubuntu 20.04
- Python: 3.10.6
- Transformers: 4.47.0
Minimal Reproducible Example
No response
Additional
Additionally, here is the terminal log output:
ubuntu@ubuntu:/ssd2/workspace/mllm/fine-tune-paligemma/Google-PaliGemma2-Finetune$ CUDA_VISIBLE_DEVICES=2,3 python train.py --lora --epochs 8
hyperparameters: remove_unused_columns=False, gradient_accumulation_steps=16, warmup_steps=2, weight_decay=1e-06, adam_beta2=0.999, logging_steps=50, optim=adamw_hf, save_strategy=steps, save_steps=200, save_total_limit=1, bf16=True, report_to=['tensorboard'], dataloader_pin_memory=False
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:05<00:00, 3.00s/it]
trainable params: 11,876,352 || all params: 3,045,003,504 || trainable%: 0.3900
freezing vision model layers
freezing multi-modal projector
Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
{'loss': 2.6005, 'grad_norm': 23.956716537475586, 'learning_rate': 1.7587939698492464e-05, 'epoch': 0.99}
{'loss': 1.9132, 'grad_norm': 23.055450439453125, 'learning_rate': 1.5075376884422112e-05, 'epoch': 1.97}
{'loss': 1.6768, 'grad_norm': 33.97260284423828, 'learning_rate': 1.256281407035176e-05, 'epoch': 2.95}
{'loss': 1.5855, 'grad_norm': 26.143875122070312, 'learning_rate': 1.0050251256281408e-05, 'epoch': 3.93}
{'loss': 1.5406, 'grad_norm': 24.072601318359375, 'learning_rate': 7.537688442211056e-06, 'epoch': 4.91}
{'loss': 1.515, 'grad_norm': 34.959720611572266, 'learning_rate': 5.025125628140704e-06, 'epoch': 5.89}
{'loss': 1.5009, 'grad_norm': 29.38210105895996, 'learning_rate': 2.512562814070352e-06, 'epoch': 6.87}
{'loss': 1.4799, 'grad_norm': 39.997161865234375, 'learning_rate': 0.0, 'epoch': 7.85}
{'train_runtime': 5094.8047, 'train_samples_per_second': 1.273, 'train_steps_per_second': 0.079, 'train_loss': 1.726562728881836, 'epoch': 7.85}
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 400/400 [1:24:54<00:00, 12.74s/it]
0%| | 0/44 [00:00<?, ?it/s]The 'batch_size' attribute of HybridCache is deprecated and will be removed in v4.49. Use the more precisely named 'self.max_batch_size' attribute instead.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 44/44 [32:50<00:00, 44.77s/it]
map_result: MeanAveragePrecisionResult:
Metric target: MetricTarget.BOXES
Class agnostic: False
mAP @ 50:95: 0.4415
mAP @ 50: 0.4892
mAP @ 75: 0.4738
mAP scores: [0.48919323 0.48853667 0.48907614 0.47919466 0.47776663 0.47379989
0.47379989 0.4553695 0.38925978 0.19944912]
IoU thresh: [0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
AP per class:
0: [0.03280268 0.03280268 0.03280268 0.03280268 0.03280268 0.03280268
0.03280268 0.03280268 0.03280268 0.02328249]
1: [0.07497781 0.07497781 0.07497781 0.07497781 0.07497781 0.07497781
0.07497781 0.07497781 0.07497781 0.02398884]
2: [0.05993939 0.05993939 0.05993939 0.05993939 0.05993939 0.05993939
0.05993939 0.05993939 0.04830372 0.03577281]
3: [0.07545013 0.07545013 0.07545013 0.07545013 0.07545013 0.07545013
0.07545013 0.07545013 0.07545013 0.04084158]
4: [0.23377338 0.23377338 0.23377338 0.23377338 0.23377338 0.23377338
0.23377338 0.23377338 0.23377338 0.12376238]
5: [0.1980198 0.1980198 0.1980198 0.1980198 0.1980198 0.1980198 0.1980198
0.1980198 0.1980198 0.1980198]
6: [0.24752475 0.24752475 0.24752475 0.24752475 0.24752475 0.24752475
0.24752475 0.24752475 0.24752475 0.24752475]
7: [0.23883888 0.23883888 0.23883888 0.23883888 0.23883888 0.23883888
0.23883888 0.09207921 0.09207921 0. ]
8: [0.330033 0.330033 0.330033 0.330033 0.330033 0.330033
0.330033 0.330033 0.330033 0.08250825]
9: [0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033
0.330033 0.330033]
10: [0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495
0.4950495 0.4950495 0.4950495]
11: [0.32850071 0.32850071 0.32850071 0.32850071 0.32850071 0.32850071
0.32850071 0.32850071 0.12835926 0.04084158]
12: [0.7029703 0.7029703 0.7029703 0.7029703 0.7029703 0.7029703 0.7029703
0.7029703 0.7029703 0. ]
13: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
14: [0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495
0.4950495 0.4950495 0. ]
15: [0.32850071 0.32850071 0.32850071 0.32850071 0.32850071 0.32850071
0.32850071 0.32850071 0.20226308 0.0466761 ]
16: [0.46153408 0.42739274 0.34818482 0.34818482 0.27392739 0.27392739
0.27392739 0.27392739 0.27392739 0.27392739]
17: [0.34771334 0.34771334 0.34771334 0.34771334 0.34771334 0.34771334
0.34771334 0.34771334 0.34771334 0.16184311]
18: [0.34470678 0.34470678 0.34470678 0.34470678 0.34470678 0.34470678
0.34470678 0.34470678 0.19455264 0.04158416]
19: [0.11261932 0.11261932 0.11261932 0.11261932 0.11261932 0.11261932
0.11261932 0.07263803 0.0090009 0. ]
20: [0.76661952 0.76661952 0.76661952 0.76661952 0.76661952 0.76661952
0.76661952 0.76661952 0.47100424 0.04950495]
21: [0.62164074 0.62164074 0.62164074 0.62164074 0.62164074 0.62164074
0.62164074 0.62164074 0.62164074 0.04950495]
22: [0.83168317 0.83168317 0.83168317 0.83168317 0.83168317 0.83168317
0.83168317 0.83168317 0.61110325 0. ]
23: [0.71047105 0.71047105 0.71047105 0.47794779 0.47794779 0.47794779
0.47794779 0.47794779 0.08550855 0.04950495]
24: [0.51815182 0.51815182 0.51815182 0.51815182 0.51815182 0.51815182
0.51815182 0.51815182 0.51815182 0.43894389]
25: [0.71239981 0.71239981 0.71239981 0.71239981 0.71239981 0.71239981
0.71239981 0.71239981 0.71239981 0.5709571 ]
26: [0.6165732 0.6165732 0.6165732 0.6165732 0.6165732 0.6165732
0.6165732 0.6165732 0.52602183 0.20660066]
27: [0.72811567 0.72811567 0.72811567 0.44680182 0.44680182 0.44680182
0.44680182 0.15558699 0.07260726 0. ]
28: [0.74422442 0.74422442 0.74422442 0.74422442 0.74422442 0.5379538
0.5379538 0.5379538 0.5379538 0.34818482]
29: [0.77310231 0.77310231 0.77310231 0.77310231 0.77310231 0.77310231
0.77310231 0.77310231 0.77310231 0.14438944]
30: [0.74014555 0.74014555 0.74014555 0.74014555 0.74014555 0.74014555
0.74014555 0.74014555 0.74014555 0.17161716]
31: [0.55941981 0.55941981 0.55941981 0.55941981 0.55941981 0.55941981
0.55941981 0.55941981 0.55941981 0.01414427]
32: [0.47854785 0.47854785 0.47854785 0.47854785 0.47854785 0.47854785
0.47854785 0.47854785 0.47854785 0.22277228]
33: [0.42285479 0.42285479 0.42285479 0.42285479 0.42285479 0.42285479
0.42285479 0.42285479 0.24752475 0.25636492]
34: [0.2491377 0.2491377 0.2491377 0.2491377 0.2491377 0.2491377
0.2491377 0.10245912 0.10245912 0.04479019]
35: [0.08392268 0.08392268 0.08392268 0.08392268 0.08392268 0.08392268
0.08392268 0.08392268 0.08392268 0.01815182]
36: [0.44554455 0.44554455 0.44554455 0.44554455 0.44554455 0.44554455
0.44554455 0.44554455 0.44554455 0.0990099 ]
37: [0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495
0.4950495 0.4950495 1. ]
38: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
39: [0.44059406 0.44059406 0.44059406 0.44059406 0.44059406 0.44059406
0.44059406 0.44059406 0.4950495 0.08168317]
40: [1. 1. 1. 1. 1. 1.
1. 1. 1. 0.69059406]
41: [0.17030549 0.17030549 0.17030549 0.17030549 0.17030549 0.17030549
0.17030549 0.17030549 0.13645595 0.00634679]
42: [0.8019802 0.8019802 0.8019802 0.8019802 0.8019802 0.8019802 0.8019802
0.8019802 0.8019802 0.0990099]
43: [0.91584158 0.91584158 0.80693069 0.80693069 0.80693069 0.80693069
0.80693069 0.80693069 0.08168317 0. ]
44: [0.81848185 0.81848185 0.81848185 0.81848185 0.81848185 0.81848185
0.81848185 0.81848185 0.81848185 0.1320132 ]
45: [0.25990099 0.25990099 0.47607261 0.47607261 0.47607261 0.47607261
0.47607261 0.14232673 0.14232673 0.14232673]
46: [0.82791136 0.82791136 0.82791136 0.82791136 0.82791136 0.82791136
0.82791136 0.82791136 0.82791136 0.42479962]
47: [0.7019802 0.7019802 0.7019802 0.7019802 0.7019802 0.7019802
0.7019802 0.7019802 0.06534653 0. ]
48: [0.09806695 0.09806695 0.09806695 0.09806695 0.09806695 0.09806695
0.09806695 0.09806695 0.09806695 0.00884017]
49: [0.62871287 0.62871287 0.62871287 0.62871287 0.62871287 0.62871287
0.62871287 0.62871287 0.62871287 0.62871287]
50: [0.71287129 0.71287129 0.71287129 0.71287129 0.71287129 0.71287129
0.71287129 0.71287129 0.42574257 0.30693069]
51: [0.12575994 0.12575994 0.12575994 0.12575994 0.12575994 0.12575994
0.12575994 0.12575994 0.12575994 0. ]
Small objects:
MeanAveragePrecisionResult:
Metric target: MetricTarget.BOXES
Class agnostic: False
mAP @ 50:95: 0.0000
mAP @ 50: 0.0000
mAP @ 75: 0.0000
mAP scores: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
IoU thresh: [0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
AP per class:
No results
Medium objects:
MeanAveragePrecisionResult:
Metric target: MetricTarget.BOXES
Class agnostic: False
mAP @ 50:95: 0.0000
mAP @ 50: 0.0000
mAP @ 75: 0.0000
mAP scores: [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
IoU thresh: [0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
AP per class:
No results
Large objects:
MeanAveragePrecisionResult:
Metric target: MetricTarget.BOXES
Class agnostic: False
mAP @ 50:95: 0.4800
mAP @ 50: 0.5283
mAP @ 75: 0.5193
mAP scores: [0.52829363 0.52765895 0.53252578 0.52467807 0.52340872 0.51931504
0.51931504 0.49847883 0.42658422 0.20021746]
IoU thresh: [0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95]
AP per class:
0: [0.03619003 0.03619003 0.03619003 0.03619003 0.03619003 0.03619003
0.03619003 0.03619003 0.03619003 0.02657742]
1: [0.05798595 0.05798595 0.05798595 0.05798595 0.05798595 0.05798595
0.05798595 0.05798595 0.05798595 0.0256342 ]
2: [0.04018435 0.04018435 0.04018435 0.04018435 0.04018435 0.04018435
0.04018435 0.04018435 0.0289021 0.01678454]
3: [0.11543189 0.11543189 0.11543189 0.11543189 0.11543189 0.11543189
0.11543189 0.11543189 0.11543189 0.08168317]
4: [0.26520509 0.26520509 0.26520509 0.26520509 0.26520509 0.26520509
0.26520509 0.26520509 0.26520509 0.12376238]
5: [0.24752475 0.24752475 0.24752475 0.24752475 0.24752475 0.24752475
0.24752475 0.24752475 0.24752475 0.24752475]
6: [0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033
0.330033 0.330033]
7: [0.56831683 0.56831683 0.56831683 0.56831683 0.56831683 0.56831683
0.56831683 0.4019802 0.4019802 0. ]
8: [0.330033 0.330033 0.330033 0.330033 0.330033 0.330033
0.330033 0.330033 0.330033 0.08250825]
9: [0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033 0.330033
0.330033 0.330033]
10: [0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495
0.4950495 0.4950495 0.4950495]
11: [0.62623762 0.62623762 0.62623762 0.62623762 0.62623762 0.62623762
0.62623762 0.62623762 0.41831683 0.33663366]
12: [0.75247525 0.75247525 0.75247525 0.75247525 0.75247525 0.75247525
0.75247525 0.75247525 0.75247525 0. ]
13: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
14: [0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495 0.4950495
0.4950495 0.4950495 0. ]
15: [0.57953795 0.57953795 0.57953795 0.57953795 0.57953795 0.57953795
0.57953795 0.57953795 0.1379538 0.03630363]
16: [0.44494449 0.41194119 0.33993399 0.33993399 0.27392739 0.27392739
0.27392739 0.27392739 0.27392739 0.27392739]
17: [0.37600189 0.37600189 0.37600189 0.37600189 0.37600189 0.37600189
0.37600189 0.37600189 0.37600189 0.16184311]
18: [0.33200051 0.33200051 0.33200051 0.33200051 0.33200051 0.33200051
0.33200051 0.33200051 0.18223141 0.03272827]
19: [0.34899919 0.34899919 0.34899919 0.34899919 0.34899919 0.34899919
0.34899919 0.19309074 0.0330033 0. ]
20: [0.81188119 0.81188119 0.81188119 0.81188119 0.81188119 0.81188119
0.81188119 0.81188119 0.5049505 0.04950495]
21: [0.48797737 0.48797737 0.48797737 0.48797737 0.48797737 0.48797737
0.48797737 0.48797737 0.48797737 0.04950495]
22: [0.74257426 0.74257426 0.74257426 0.74257426 0.74257426 0.74257426
0.74257426 0.74257426 0.5675389 0. ]
23: [0.60003143 0.60003143 0.60003143 0.39336791 0.39336791 0.39336791
0.39336791 0.39336791 0.07150715 0.04950495]
24: [0.57001414 0.57001414 0.57001414 0.57001414 0.57001414 0.57001414
0.57001414 0.57001414 0.57001414 0.49080622]
25: [0.71239981 0.71239981 0.71239981 0.71239981 0.71239981 0.71239981
0.71239981 0.71239981 0.71239981 0.5709571 ]
26: [0.60591059 0.60591059 0.60591059 0.60591059 0.60591059 0.60591059
0.60591059 0.60591059 0.51749175 0.20660066]
27: [0.59619491 0.59619491 0.59619491 0.39477771 0.39477771 0.39477771
0.39477771 0.11745292 0.08958039 0. ]
28: [0.77062706 0.77062706 0.77062706 0.77062706 0.77062706 0.55775578
0.55775578 0.55775578 0.55775578 0.36138614]
29: [0.77310231 0.77310231 0.77310231 0.77310231 0.77310231 0.77310231
0.77310231 0.77310231 0.77310231 0.14438944]
30: [0.73443344 0.73443344 0.73443344 0.73443344 0.73443344 0.73443344
0.73443344 0.73443344 0.73443344 0.16984006]
31: [0.6039604 0.6039604 0.6039604 0.6039604 0.6039604 0.6039604 0.6039604
0.6039604 0.6039604 0.0330033]
32: [0.51980198 0.51980198 0.51980198 0.51980198 0.51980198 0.51980198
0.51980198 0.51980198 0.51980198 0.24339934]
33: [0.41136256 0.41136256 0.41136256 0.41136256 0.41136256 0.41136256
0.41136256 0.41136256 0.25636492 0.24752475]
34: [0.26440296 0.26440296 0.26440296 0.26440296 0.26440296 0.26440296
0.26440296 0.11423612 0.11423612 0.04696624]
35: [0.15470297 0.15470297 0.15470297 0.15470297 0.15470297 0.15470297
0.15470297 0.15470297 0.15470297 0.04084158]
36: [0.41254125 0.41254125 0.41254125 0.41254125 0.41254125 0.41254125
0.41254125 0.41254125 0.41254125 0.12376238]
37: [1. 1. 1. 1. 1. 1. 1.
1. 1. 0.4950495]
38: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
39: [0.7019802 0.7019802 0.7019802 0.7019802 0.7019802 0.7019802
0.7019802 0.7019802 0.75643564 0.06534653]
40: [1. 1. 1. 1. 1. 1.
1. 1. 1. 0.69059406]
41: [0.17030549 0.17030549 0.17030549 0.17030549 0.17030549 0.17030549
0.17030549 0.17030549 0.13645595 0.00634679]
42: [0.75247525 0.75247525 0.75247525 0.75247525 0.75247525 0.75247525
0.75247525 0.75247525 0.75247525 0.0990099 ]
43: [0.80693069 0.80693069 0.91584158 0.91584158 0.91584158 0.91584158
0.91584158 0.91584158 0.08168317 0. ]
44: [0.81848185 0.81848185 0.81848185 0.81848185 0.81848185 0.81848185
0.81848185 0.81848185 0.81848185 0.1320132 ]
45: [0.25990099 0.25990099 0.47607261 0.47607261 0.47607261 0.47607261
0.47607261 0.14232673 0.14232673 0.14232673]
46: [0.87741631 0.87741631 0.87741631 0.87741631 0.87741631 0.87741631
0.87741631 0.87741631 0.87741631 0.39179632]
47: [0.75643564 0.75643564 0.75643564 0.75643564 0.75643564 0.75643564
0.75643564 0.75643564 0.06534653 0. ]
48: [0.09806695 0.09806695 0.09806695 0.09806695 0.09806695 0.09806695
0.09806695 0.09806695 0.09806695 0.00884017]
49: [0.61103253 0.61103253 0.61103253 0.61103253 0.61103253 0.61103253
0.61103253 0.61103253 0.61103253 0.61103253]
50: [0.64686469 0.64686469 0.64686469 0.64686469 0.64686469 0.64686469
0.64686469 0.64686469 0.45874587 0.33993399]
51: [0.42822549 0.42822549 0.42822549 0.42822549 0.42822549 0.42822549
0.42822549 0.42822549 0.42822549 0. ]
Are you willing to submit a PR?
- Yes I'd like to help by submitting a PR!
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working