Skip to content

Epoch 1/10 Error in py_call_impl(callable, call_args$unnamed, call_args$named) : OverflowError: Python int too large to convert to C long #1508

@FrancoMSuarez

Description

@FrancoMSuarez

I'm trying to follow this example, but I'm getting the following error:

Epoch 1/10
Error in py_call_impl(callable, call_args$unnamed, call_args$named) : 
  OverflowError: Python int too large to convert to C long

Here's my code::

library(tidyverse)
library(neuralnet)
library(keras3)
keras3::install_keras(
  envname = "r-keras",
  extra_packages = c("scipy", "pandas", "Pillow", "pydot", "ipython",
                     "tensorflow_datasets"),
  python_version = ">=3.9,<=3.11",
  backend = c("tensorflow", "jax"),
  gpu = NA,
  restart_session = TRUE
)

library(tensorflow)

c(c(x_train, y_train), c(x_test, y_test)) %<-% dataset_cifar10()

x_train <- x_train / 255
x_test <-  x_test / 255



model <- keras_model_sequential()%>%
  # Start with a hidden 2D convolutional layer
  layer_conv_2d(
    filter = 16, kernel_size = c(3,3), padding = "same",
    input_shape = c(32, 32, 3), activation = 'leaky_relu'
  ) %>%
  
  # 2nd hidden layer
  layer_conv_2d(filter = 32, kernel_size = c(3,3), activation = 'leaky_relu') %>%
  
  
  # Use max pooling
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_dropout(0.25) %>%
  
  # 3rd and 4th hidden 2D convolutional layers
  layer_conv_2d(filter = 32, kernel_size = c(3,3), padding = "same", activation = 'leaky_relu') %>%
  
  layer_conv_2d(filter = 64, kernel_size = c(3,3), activation = 'leaky_relu') %>%
  
  # Use max pooling
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_dropout(0.25) %>%
  
  # Flatten max filtered output into feature vector
  # and feed into dense layer
  layer_flatten() %>%
  layer_dense(256, activation = 'leaky_relu') %>%
  layer_dropout(0.5) %>%
  
  # Outputs from dense layer
  layer_dense(10, activation = 'softmax')


summary(model)

learning_rate <- learning_rate_schedule_exponential_decay(
  initial_learning_rate = 5e-3,
  decay_rate = 0.96,
  decay_steps = 1500,
  staircase = TRUE
)

opt <- optimizer_adamax(learning_rate = learning_rate)

loss <- loss_sparse_categorical_crossentropy(from_logits = F)


model %>% compile(
  loss = loss,
  optimizer = opt,
  metrics = "accuracy"
)

history <- model %>% fit(
  x_train, y_train,
  batch_size = 32,
  epochs = 10,
  validation_data = list(x_test, y_test),
  shuffle = TRUE
)

I can't find the solution to this problem.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions