-
Notifications
You must be signed in to change notification settings - Fork 282
Open
Description
I'm trying to follow this example, but I'm getting the following error:
Epoch 1/10
Error in py_call_impl(callable, call_args$unnamed, call_args$named) :
OverflowError: Python int too large to convert to C longHere's my code::
library(tidyverse)
library(neuralnet)
library(keras3)
keras3::install_keras(
envname = "r-keras",
extra_packages = c("scipy", "pandas", "Pillow", "pydot", "ipython",
"tensorflow_datasets"),
python_version = ">=3.9,<=3.11",
backend = c("tensorflow", "jax"),
gpu = NA,
restart_session = TRUE
)
library(tensorflow)
c(c(x_train, y_train), c(x_test, y_test)) %<-% dataset_cifar10()
x_train <- x_train / 255
x_test <- x_test / 255
model <- keras_model_sequential()%>%
# Start with a hidden 2D convolutional layer
layer_conv_2d(
filter = 16, kernel_size = c(3,3), padding = "same",
input_shape = c(32, 32, 3), activation = 'leaky_relu'
) %>%
# 2nd hidden layer
layer_conv_2d(filter = 32, kernel_size = c(3,3), activation = 'leaky_relu') %>%
# Use max pooling
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(0.25) %>%
# 3rd and 4th hidden 2D convolutional layers
layer_conv_2d(filter = 32, kernel_size = c(3,3), padding = "same", activation = 'leaky_relu') %>%
layer_conv_2d(filter = 64, kernel_size = c(3,3), activation = 'leaky_relu') %>%
# Use max pooling
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(0.25) %>%
# Flatten max filtered output into feature vector
# and feed into dense layer
layer_flatten() %>%
layer_dense(256, activation = 'leaky_relu') %>%
layer_dropout(0.5) %>%
# Outputs from dense layer
layer_dense(10, activation = 'softmax')
summary(model)
learning_rate <- learning_rate_schedule_exponential_decay(
initial_learning_rate = 5e-3,
decay_rate = 0.96,
decay_steps = 1500,
staircase = TRUE
)
opt <- optimizer_adamax(learning_rate = learning_rate)
loss <- loss_sparse_categorical_crossentropy(from_logits = F)
model %>% compile(
loss = loss,
optimizer = opt,
metrics = "accuracy"
)
history <- model %>% fit(
x_train, y_train,
batch_size = 32,
epochs = 10,
validation_data = list(x_test, y_test),
shuffle = TRUE
)I can't find the solution to this problem.
Metadata
Metadata
Assignees
Labels
No labels