Skip to content

Latest commit

 

History

History
41 lines (28 loc) · 1.06 KB

README.md

File metadata and controls

41 lines (28 loc) · 1.06 KB

Introduction

DEIDENTIFICATION of dicom studies, for participating to MIDI-B De-identification challenge (https://www.synapse.org/Synapse:syn53065760/wiki/627876)

installation

  1. Clone the repository
  2. Create an enviroment python -m venv venv
  3. Activate the venv venv\Scripts\activate
  4. Install all pakages pip install -r requirements.txt
  5. Install keras-ocr pip install -q keras-ocr

lets run:

  • into debug_de_identification.py insert the input parameters: - input_data_folder = r'C:\challenge_testdata\input_data' - rules_file = './custom_rules.json' (here already the rules used for the challenge) - basic_profile_file = './base_anonymization_profile.csv'
  • python debug_de_identification

Outputs

  • in the input data folder have been created the data and the mappings folder
  • a log file has already created.

Contribute

https://dicom.nema.org/dicom/2013/output/chtml/part15/sect_E.3.html#sect_E.3.1

package used

  • pydicom==2.4.4
  • numpy
  • matplotlib
  • scikit-image
  • pillow
  • tensorflow==2.15
  • keras-ocr
  • thefuzz