-
Notifications
You must be signed in to change notification settings - Fork 0
/
wandb_demo.py
80 lines (67 loc) · 2.05 KB
/
wandb_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
## ***********
import wandb
from wandb.keras import WandbCallback
## ***********
list_of_gpus = tf.config.list_physical_devices('GPU')
if len(list_of_gpus) > 0:
print(f"GPUs detected! {len(list_of_gpus)} GPUs being used")
else:
print("no GPUs detected =(")
## ***********
wandb.init(project="wandb-script")
wandb.config = {
"learning_rate": 0.001,
"epochs": 15,
"batch_size": 128
}
## ***********
# Model / data parameters
num_classes = 10
input_shape = (28, 28, 1)
# Load the data and split it between train and test sets
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
# Scale images to the [0, 1] range
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# Make sure images have shape (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "train samples")
print(x_test.shape[0], "test samples")
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = keras.Sequential(
[
keras.Input(shape=input_shape),
layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),
layers.Dropout(0.5),
layers.Dense(num_classes, activation="softmax"),
]
)
model.summary()
opt = keras.optimizers.Adam(
learning_rate=wandb.config['learning_rate'] ## ***********
)
model.compile(
loss="categorical_crossentropy",
optimizer=opt,
metrics=["accuracy"]
)
model.fit(
x_train,
y_train,
validation_split=0.1,
batch_size=wandb.config['batch_size'], ## ***********
epochs=wandb.config['epochs'], ## ***********
callbacks=[WandbCallback()] ## ***********
)