-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathdescriptor_utils.rs
883 lines (745 loc) · 29.7 KB
/
descriptor_utils.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Portions Copyright 2019 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE-BSD-3-Clause file.
//
// Copyright (C) 2024 Red Hat, Inc. All rights reserved.
//
// SPDX-License-Identifier: Apache-2.0 AND BSD-3-Clause
use std::collections::VecDeque;
use std::io::{self, Read, Write};
use std::mem::{size_of, MaybeUninit};
use std::ops::Deref;
use std::ptr::copy_nonoverlapping;
use std::{cmp, result};
use crate::{DescriptorChain, Error};
use vm_memory::bitmap::{BitmapSlice, MS};
use vm_memory::{
Address, ByteValued, GuestMemory, GuestMemoryRegion, MemoryRegionAddress, VolatileSlice,
};
pub type Result<T> = result::Result<T, Error>;
#[derive(Clone)]
struct DescriptorChainConsumer<'a, B> {
buffers: VecDeque<VolatileSlice<'a, B>>,
bytes_consumed: usize,
}
impl<'a, B: BitmapSlice> DescriptorChainConsumer<'a, B> {
fn available_bytes(&self) -> usize {
// This is guaranteed not to overflow because the total length of the chain
// is checked during all creations of `DescriptorChainConsumer` (see
// `Reader::new()` and `Writer::new()`).
self.buffers
.iter()
.fold(0usize, |count, vs| count + vs.len())
}
fn bytes_consumed(&self) -> usize {
self.bytes_consumed
}
/// Consumes at most `count` bytes from the `DescriptorChain`. Callers must provide a function
/// that takes a `&[VolatileSlice]` and returns the total number of bytes consumed. This
/// function guarantees that the combined length of all the slices in the `&[VolatileSlice]` is
/// less than or equal to `count`.
///
/// # Errors
///
/// If the provided function returns any error then no bytes are consumed from the buffer and
/// the error is returned to the caller.
fn consume<F>(&mut self, count: usize, f: F) -> io::Result<usize>
where
F: FnOnce(&[&VolatileSlice<B>]) -> io::Result<usize>,
{
let mut buflen = 0;
let mut bufs = Vec::with_capacity(self.buffers.len());
for vs in &self.buffers {
if buflen >= count {
break;
}
bufs.push(vs);
let rem = count - buflen;
if rem < vs.len() {
buflen += rem;
} else {
buflen += vs.len();
}
}
if bufs.is_empty() {
return Ok(0);
}
let bytes_consumed = f(&bufs)?;
// This can happen if a driver tricks a device into reading/writing more data than
// fits in a `usize`.
let total_bytes_consumed =
self.bytes_consumed
.checked_add(bytes_consumed)
.ok_or_else(|| {
io::Error::new(io::ErrorKind::InvalidData, Error::DescriptorChainOverflow)
})?;
let mut rem = bytes_consumed;
while let Some(vs) = self.buffers.pop_front() {
if rem < vs.len() {
// Split the slice and push the remainder back into the buffer list. Safe because we
// know that `rem` is not out of bounds due to the check and we checked the bounds
// on `vs` when we added it to the buffer list.
self.buffers.push_front(vs.offset(rem).unwrap());
break;
}
// No need for checked math because we know that `vs.size() <= rem`.
rem -= vs.len();
}
self.bytes_consumed = total_bytes_consumed;
Ok(bytes_consumed)
}
fn split_at(&mut self, offset: usize) -> Result<DescriptorChainConsumer<'a, B>> {
let mut rem = offset;
let pos = self.buffers.iter().position(|vs| {
if rem < vs.len() {
true
} else {
rem -= vs.len();
false
}
});
if let Some(at) = pos {
let mut other = self.buffers.split_off(at);
if rem > 0 {
// There must be at least one element in `other` because we checked
// its `size` value in the call to `position` above.
let front = other.pop_front().expect("empty VecDeque after split");
self.buffers
.push_back(front.subslice(0, rem).map_err(Error::VolatileMemoryError)?);
other.push_front(front.offset(rem).map_err(Error::VolatileMemoryError)?);
}
Ok(DescriptorChainConsumer {
buffers: other,
bytes_consumed: 0,
})
} else if rem == 0 {
Ok(DescriptorChainConsumer {
buffers: VecDeque::new(),
bytes_consumed: 0,
})
} else {
Err(Error::SplitOutOfBounds(offset))
}
}
}
/// Provides high-level interface over the sequence of memory regions
/// defined by readable descriptors in the descriptor chain.
///
/// Note that virtio spec requires driver to place any device-writable
/// descriptors after any device-readable descriptors (2.6.4.2 in Virtio Spec v1.1).
/// Reader will skip iterating over descriptor chain when first writable
/// descriptor is encountered.
#[derive(Clone)]
pub struct Reader<'a, B = ()> {
buffer: DescriptorChainConsumer<'a, B>,
}
impl<'a, B: BitmapSlice> Reader<'a, B> {
/// Construct a new Reader wrapper over `desc_chain`.
pub fn new<M, T>(mem: &'a M, desc_chain: DescriptorChain<T>) -> Result<Reader<'a, MS<'a, M>>>
where
M: GuestMemory,
T: Deref,
T::Target: GuestMemory + Sized,
{
let mut total_len: usize = 0;
let buffers = desc_chain
.readable()
.map(|desc| {
// Verify that summing the descriptor sizes does not overflow.
// This can happen if a driver tricks a device into reading more data than
// fits in a `usize`.
total_len = total_len
.checked_add(desc.len() as usize)
.ok_or(Error::DescriptorChainOverflow)?;
let region = mem
.find_region(desc.addr())
.ok_or(Error::FindMemoryRegion)?;
let offset = desc
.addr()
.checked_sub(region.start_addr().raw_value())
.unwrap();
region
.get_slice(MemoryRegionAddress(offset.raw_value()), desc.len() as usize)
.map_err(Error::GuestMemoryError)
})
.collect::<Result<VecDeque<_>>>()?;
Ok(Reader {
buffer: DescriptorChainConsumer {
buffers,
bytes_consumed: 0,
},
})
}
/// Reads an object from the descriptor chain buffer.
pub fn read_obj<T: ByteValued>(&mut self) -> io::Result<T> {
let mut obj = MaybeUninit::<T>::uninit();
// SAFETY: `MaybeUninit` guarantees that the pointer is valid for
// `size_of::<T>()` bytes.
let buf = unsafe {
::std::slice::from_raw_parts_mut(obj.as_mut_ptr() as *mut u8, size_of::<T>())
};
self.read_exact(buf)?;
// SAFETY: any type that implements `ByteValued` can be considered initialized
// even if it is filled with random data.
Ok(unsafe { obj.assume_init() })
}
/// Returns number of bytes available for reading. May return an error if the combined
/// lengths of all the buffers in the DescriptorChain would cause an integer overflow.
pub fn available_bytes(&self) -> usize {
self.buffer.available_bytes()
}
/// Returns number of bytes already read from the descriptor chain buffer.
pub fn bytes_read(&self) -> usize {
self.buffer.bytes_consumed()
}
/// Splits this `Reader` into two at the given offset in the `DescriptorChain` buffer.
/// After the split, `self` will be able to read up to `offset` bytes while the returned
/// `Reader` can read up to `available_bytes() - offset` bytes. Returns an error if
/// `offset > self.available_bytes()`.
pub fn split_at(&mut self, offset: usize) -> Result<Reader<'a, B>> {
self.buffer.split_at(offset).map(|buffer| Reader { buffer })
}
}
impl<B: BitmapSlice> io::Read for Reader<'_, B> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.buffer.consume(buf.len(), |bufs| {
let mut rem = buf;
let mut total = 0;
for vs in bufs {
let copy_len = cmp::min(rem.len(), vs.len());
// SAFETY: Safe because we verify that we do not read outside
// of the slice's bound. The slice guard will only get dropped
// after the function returns. This will keep the pointer valid
// while reads are happening.
unsafe {
copy_nonoverlapping(vs.ptr_guard().as_ptr(), rem.as_mut_ptr(), copy_len);
}
rem = &mut rem[copy_len..];
total += copy_len;
}
Ok(total)
})
}
}
/// Provides high-level interface over the sequence of memory regions
/// defined by writable descriptors in the descriptor chain.
///
/// Note that virtio spec requires driver to place any device-writable
/// descriptors after any device-readable descriptors (2.6.4.2 in Virtio Spec v1.1).
/// Writer will start iterating the descriptors from the first writable one and will
/// assume that all following descriptors are writable.
#[derive(Clone)]
pub struct Writer<'a, B = ()> {
buffer: DescriptorChainConsumer<'a, B>,
}
impl<'a, B: BitmapSlice> Writer<'a, B> {
/// Construct a new Writer wrapper over `desc_chain`.
pub fn new<M, T>(mem: &'a M, desc_chain: DescriptorChain<T>) -> Result<Writer<'a, MS<'a, M>>>
where
M: GuestMemory,
T: Deref,
T::Target: GuestMemory + Sized,
{
let mut total_len: usize = 0;
let buffers = desc_chain
.writable()
.map(|desc| {
// Verify that summing the descriptor sizes does not overflow.
// This can happen if a driver tricks a device into writing more data than
// fits in a `usize`.
total_len = total_len
.checked_add(desc.len() as usize)
.ok_or(Error::DescriptorChainOverflow)?;
let region = mem
.find_region(desc.addr())
.ok_or(Error::FindMemoryRegion)?;
let offset = desc
.addr()
.checked_sub(region.start_addr().raw_value())
.unwrap();
region
.get_slice(MemoryRegionAddress(offset.raw_value()), desc.len() as usize)
.map_err(Error::GuestMemoryError)
})
.collect::<Result<VecDeque<_>>>()?;
Ok(Writer {
buffer: DescriptorChainConsumer {
buffers,
bytes_consumed: 0,
},
})
}
/// Writes an object to the descriptor chain buffer.
pub fn write_obj<T: ByteValued>(&mut self, val: T) -> io::Result<()> {
self.write_all(val.as_slice())
}
/// Returns number of bytes available for writing. May return an error if the combined
/// lengths of all the buffers in the DescriptorChain would cause an overflow.
pub fn available_bytes(&self) -> usize {
self.buffer.available_bytes()
}
/// Returns number of bytes already written to the descriptor chain buffer.
pub fn bytes_written(&self) -> usize {
self.buffer.bytes_consumed()
}
/// Splits this `Writer` into two at the given offset in the `DescriptorChain` buffer.
/// After the split, `self` will be able to write up to `offset` bytes while the returned
/// `Writer` can write up to `available_bytes() - offset` bytes. Returns an error if
/// `offset > self.available_bytes()`.
pub fn split_at(&mut self, offset: usize) -> Result<Writer<'a, B>> {
self.buffer.split_at(offset).map(|buffer| Writer { buffer })
}
}
impl<B: BitmapSlice> io::Write for Writer<'_, B> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.buffer.consume(buf.len(), |bufs| {
let mut rem = buf;
let mut total = 0;
for vs in bufs {
let copy_len = cmp::min(rem.len(), vs.len());
// SAFETY: Safe because we ensure that we do not write over the
// slice's bounds. The slice guard will only get dropped after
// the function returns. This will keep the pointer valid while
// writes are happening.
unsafe {
copy_nonoverlapping(rem.as_ptr(), vs.ptr_guard_mut().as_ptr(), copy_len);
}
vs.bitmap().mark_dirty(0, copy_len);
rem = &rem[copy_len..];
total += copy_len;
}
Ok(total)
})
}
fn flush(&mut self) -> io::Result<()> {
// Nothing to flush since the writes go straight into the buffer.
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
desc::{split::Descriptor as SplitDescriptor, RawDescriptor},
Queue, QueueOwnedT, QueueT,
};
use vm_memory::{GuestAddress, GuestMemoryMmap, Le32};
use crate::mock::MockSplitQueue;
use virtio_bindings::bindings::virtio_ring::{VRING_DESC_F_NEXT, VRING_DESC_F_WRITE};
const MAX_QUEUE_SIZE: u16 = 16;
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum DescriptorType {
Readable,
Writable,
}
/// Test utility function to create a descriptor chain in guest memory.
pub fn create_descriptor_chain(
memory: &GuestMemoryMmap,
descriptor_array_addr: GuestAddress,
descriptors: Vec<(DescriptorType, u32)>,
spaces_between_regions: u32,
) -> Result<DescriptorChain<&GuestMemoryMmap>> {
let descriptors_len = descriptors.len();
let mut descs = vec![];
let queue = MockSplitQueue::create(memory, descriptor_array_addr, MAX_QUEUE_SIZE);
let mut buffers_start_addr = queue.end();
for (index, (type_, size)) in descriptors.into_iter().enumerate() {
let mut flags = 0;
if let DescriptorType::Writable = type_ {
flags |= VRING_DESC_F_WRITE;
}
if index + 1 < descriptors_len {
flags |= VRING_DESC_F_NEXT;
}
descs.push(RawDescriptor::from(SplitDescriptor::new(
buffers_start_addr.raw_value(),
size,
flags as u16,
(index + 1) as u16,
)));
let offset = size + spaces_between_regions;
buffers_start_addr = buffers_start_addr
.checked_add(u64::from(offset))
.ok_or(Error::InvalidChain)?;
}
queue.build_desc_chain(&descs).unwrap();
let avail_ring = queue.avail_addr();
let mut queue: Queue = Queue::new(MAX_QUEUE_SIZE).unwrap();
queue
.try_set_desc_table_address(descriptor_array_addr)
.unwrap();
queue.try_set_avail_ring_address(avail_ring).unwrap();
queue.set_ready(true);
let chain = queue.iter(memory).unwrap().next().unwrap();
Ok(chain.clone())
}
#[test]
fn reader_test_inv_desc_addr() {
let memory: GuestMemoryMmap =
GuestMemoryMmap::from_ranges(&[(GuestAddress(0x0), 0x1000)]).unwrap();
let queue = MockSplitQueue::create(&memory, GuestAddress(0x0), MAX_QUEUE_SIZE);
// set addr out of memory
let descriptor = RawDescriptor::from(SplitDescriptor::new(0x1001, 1, 0, 1_u16));
queue.build_desc_chain(&[descriptor]).unwrap();
let avail_ring = queue.avail_addr();
let mut queue: Queue = Queue::new(MAX_QUEUE_SIZE).unwrap();
queue.try_set_desc_table_address(GuestAddress(0x0)).unwrap();
queue.try_set_avail_ring_address(avail_ring).unwrap();
queue.set_ready(true);
let chain = queue.iter(&memory).unwrap().next().unwrap();
assert!(Reader::<()>::new(&memory, chain).is_err());
}
#[test]
fn reader_test_simple_chain() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 8),
(Readable, 16),
(Readable, 18),
(Readable, 64),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
assert_eq!(reader.available_bytes(), 106);
assert_eq!(reader.bytes_read(), 0);
let mut buffer = [0_u8; 64];
if let Err(e) = reader.read_exact(&mut buffer) {
panic!("read_exact should not fail here: {:?}", e);
}
assert_eq!(reader.available_bytes(), 42);
assert_eq!(reader.bytes_read(), 64);
match reader.read(&mut buffer) {
Err(e) => panic!("read should not fail here: {:?}", e),
Ok(length) => assert_eq!(length, 42),
}
assert_eq!(reader.available_bytes(), 0);
assert_eq!(reader.bytes_read(), 106);
}
#[test]
fn writer_test_simple_chain() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Writable, 8),
(Writable, 16),
(Writable, 18),
(Writable, 64),
],
0,
)
.expect("create_descriptor_chain failed");
let mut writer = Writer::<()>::new(&memory, chain).expect("failed to create Writer");
assert_eq!(writer.available_bytes(), 106);
assert_eq!(writer.bytes_written(), 0);
let buffer = [0_u8; 64];
if let Err(e) = writer.write_all(&buffer) {
panic!("write_all should not fail here: {:?}", e);
}
assert_eq!(writer.available_bytes(), 42);
assert_eq!(writer.bytes_written(), 64);
match writer.write(&buffer) {
Err(e) => panic!("write should not fail here {:?}", e),
Ok(length) => assert_eq!(length, 42),
}
assert_eq!(writer.available_bytes(), 0);
assert_eq!(writer.bytes_written(), 106);
}
#[test]
fn reader_test_incompatible_chain() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(&memory, GuestAddress(0x0), vec![(Writable, 8)], 0)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
assert_eq!(reader.available_bytes(), 0);
assert_eq!(reader.bytes_read(), 0);
assert!(reader.read_obj::<u8>().is_err());
assert_eq!(reader.available_bytes(), 0);
assert_eq!(reader.bytes_read(), 0);
}
#[test]
fn writer_test_incompatible_chain() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(&memory, GuestAddress(0x0), vec![(Readable, 8)], 0)
.expect("create_descriptor_chain failed");
let mut writer = Writer::<()>::new(&memory, chain).expect("failed to create Writer");
assert_eq!(writer.available_bytes(), 0);
assert_eq!(writer.bytes_written(), 0);
assert!(writer.write_obj(0u8).is_err());
assert_eq!(writer.available_bytes(), 0);
assert_eq!(writer.bytes_written(), 0);
}
#[test]
fn reader_writer_shared_chain() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader =
Reader::<()>::new(&memory, chain.clone()).expect("failed to create Reader");
let mut writer = Writer::<()>::new(&memory, chain).expect("failed to create Writer");
assert_eq!(reader.bytes_read(), 0);
assert_eq!(writer.bytes_written(), 0);
let mut buffer = Vec::with_capacity(200);
assert_eq!(
reader
.read_to_end(&mut buffer)
.expect("read should not fail here"),
128
);
// The writable descriptors are only 68 bytes long.
writer
.write_all(&buffer[..68])
.expect("write should not fail here");
assert_eq!(reader.available_bytes(), 0);
assert_eq!(reader.bytes_read(), 128);
assert_eq!(writer.available_bytes(), 0);
assert_eq!(writer.bytes_written(), 68);
}
#[test]
fn reader_writer_shattered_object() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let secret: Le32 = 0x1234_5678.into();
// Create a descriptor chain with memory regions that are properly separated.
let chain_writer = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![(Writable, 1), (Writable, 1), (Writable, 1), (Writable, 1)],
123,
)
.expect("create_descriptor_chain failed");
let mut writer = Writer::<()>::new(&memory, chain_writer).expect("failed to create Writer");
if let Err(e) = writer.write_obj(secret) {
panic!("write_obj should not fail here: {:?}", e);
}
// Now create new descriptor chain pointing to the same memory and try to read it.
let chain_reader = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![(Readable, 1), (Readable, 1), (Readable, 1), (Readable, 1)],
123,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain_reader).expect("failed to create Reader");
match reader.read_obj::<Le32>() {
Err(e) => panic!("read_obj should not fail here: {:?}", e),
Ok(read_secret) => assert_eq!(read_secret, secret),
}
}
#[test]
fn reader_unexpected_eof() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![(Readable, 256), (Readable, 256)],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
let mut buf = vec![0; 1024];
assert_eq!(
reader
.read_exact(&mut buf[..])
.expect_err("read more bytes than available")
.kind(),
io::ErrorKind::UnexpectedEof
);
}
#[test]
fn split_border() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader =
Reader::<()>::new(&memory, chain.clone()).expect("failed to create Reader");
let other = reader.split_at(32).expect("failed to split Reader");
assert_eq!(reader.available_bytes(), 32);
assert_eq!(other.available_bytes(), 96);
let mut writer =
Writer::<()>::new(&memory, chain.clone()).expect("failed to create Writer");
let other = writer.split_at(64).expect("failed to split Writer");
assert_eq!(writer.available_bytes(), 64);
assert_eq!(other.available_bytes(), 4);
}
#[test]
fn split_middle() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
let other = reader.split_at(24).expect("failed to split Reader");
assert_eq!(reader.available_bytes(), 24);
assert_eq!(other.available_bytes(), 104);
}
#[test]
fn split_end() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
let other = reader.split_at(128).expect("failed to split Reader");
assert_eq!(reader.available_bytes(), 128);
assert_eq!(other.available_bytes(), 0);
}
#[test]
fn split_beginning() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
let other = reader.split_at(0).expect("failed to split Reader");
assert_eq!(reader.available_bytes(), 0);
assert_eq!(other.available_bytes(), 128);
}
#[test]
fn split_outofbounds() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![
(Readable, 16),
(Readable, 16),
(Readable, 96),
(Writable, 64),
(Writable, 1),
(Writable, 3),
],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
if reader.split_at(256).is_ok() {
panic!("successfully split Reader with out of bounds offset");
}
}
#[test]
fn read_full() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![(Readable, 16), (Readable, 16), (Readable, 16)],
0,
)
.expect("create_descriptor_chain failed");
let mut reader = Reader::<()>::new(&memory, chain).expect("failed to create Reader");
let mut buf = [0u8; 64];
assert_eq!(
reader.read(&mut buf[..]).expect("failed to read to buffer"),
48
);
}
#[test]
fn write_full() {
use DescriptorType::*;
let memory_start_addr = GuestAddress(0x0);
let memory = GuestMemoryMmap::from_ranges(&[(memory_start_addr, 0x10000)]).unwrap();
let chain = create_descriptor_chain(
&memory,
GuestAddress(0x0),
vec![(Writable, 16), (Writable, 16), (Writable, 16)],
0,
)
.expect("create_descriptor_chain failed");
let mut writer = Writer::<()>::new(&memory, chain).expect("failed to create Writer");
let buf = [0xdeu8; 64];
assert_eq!(
writer.write(&buf[..]).expect("failed to write from buffer"),
48
);
assert!(writer.flush().is_ok());
}
}