Skip to content
Rick Waldron edited this page May 9, 2015 · 32 revisions

The Proximity class constructs an object that represents a single Proximity sensor.

Supported Proximity sensors:

  • Pulse/PWM
  • Analog
    • Ultrasonic
      • MB1000, LV-MaxSonar-EZ0
        • Hardware Constraints
          • Range:
            • Close: 0-15cm (will result in 15cm reading)
            • Long: 15-645cm (15-50cm may experience acoustic phase cancellation)
          • Resolution: 2.54cm
        • Likely supports the entire LV-MaxSonar-EZ* line, additional sensors to be confirmed.
      • MB1010, LV-MaxSonar-EZ1
        • Hardware Constraints
          • Range:
            • Close: 0-15cm (will result in 15cm reading)
            • Long: 15-645cm
          • Resolution: 2.54cm
      • MB1003, HRLV-MaxSonar-EZ0
        • Hardware Constraints
          • Range:
            • Close: 0-30cm (will result in 30cm reading)
            • Long: 30-500cm
          • Resolution: 1cm
      • MB1230, XL-MaxSonar-EZ3
        • Hardware Constraints
          • Range:
            • Close: 0-20cm (will result in 20cm reading)
            • Long: 20-765cm
          • Resolution: 1cm
    • Infrared
      • GP2Y0A21YK
        • Hardware Constraints
          • Range:
            • Close: 0-10cm (will result in 10cm reading)
            • Long: 10-80cm
          • Resolution: 1cm
      • GP2D120XJ00F
        • Hardware Constraints
          • Range:
            • Close: 0-4cm (will result in 4cm reading)
            • Long: 4-30cm
          • Resolution: 1cm
      • GP2Y0A02YK0F
        • Hardware Constraints
          • Range:
            • Close: 0-15cm (will result in 15cm reading)
            • Long: 15-150cm
          • Resolution: 1cm
      • GP2Y0A41SK0F
        • Hardware Constraints
          • Range:
            • Close: 0-4cm (will result in 4cm reading)
            • Long: 4-30cm
          • Resolution: 1cm
      • GP2Y0A710K0F
        • Hardware Constraints
          • Range:
            • Close: 0-50cm (will result in 50cm reading)
            • Long: 50-500cm
          • Resolution: 1cm
  • I2C
    • Lidar
      • LIDAR-Lite
        • Hardware Constraints
          • Range:
            • Long: 0-4000cm
          • Resolution: < 1cm
    • Ultrasonic
      • SRF10
        • Hardware Constraints
          • Range:
            • Close: 0-6cm (will result in 6cm reading)
            • Long: 6-600cm
          • Resolution: < 1cm

Parameters

  • options An object of property parameters.

    Property Type Value/Description Default Required
    pin Number, String Analog or Digital Pin. Use for non-I2C sensors Yes (non-I2C)
    controller String GP2Y0A21YK, GP2D120XJ00F, GP2Y0A02YK0F, GP2Y0A41SK0F, GP2Y0A710K0F, PING_PULSEIN *, MB1000, MB1003, MB1230, LIDARLITE. See aliases Yes
    freq Number Milliseconds. The frequency in ms of data events. 25ms No
    Controller Alias Table
    Controller Alias
    GP2Y0A21YK 2Y0A21
    GP2D120XJ00F 2D120X
    GP2Y0A02YK0F 2Y0A02
    GP2Y0A41SK0F OA41SK
    GP2Y0A21YK 0A21
    GP2Y0A02YK0F 0A02
    LV-MaxSonar-EZ MB1000
    HRLV-MaxSonar-EZ0 MB1003
    XL-MaxSonar-EZ3 MB1230
    HC-SR04 PING_PULSE_IN
    HCSR04 PING_PULSE_IN
    SRF05 PING_PULSE_IN
    PARALLAXPING PING_PULSE_IN
    SEEEDPING PING_PULSE_IN
    GROVEPING PING_PULSE_IN
    LIDAR-Lite LIDARLITE

Shape

{ 
  id: A user definable id value. Defaults to a generated uid
  cm: Distance to obstruction in centimeters. READONLY
  centimeters: Distance to obstruction in centimeters. READONLY
  in: Distance to obstruction in inches. READONLY
  inches: Distance to obstruction in inches. READONLY
}

Component Initialization

Analog GP2Y0A21YK (and friends)

/*
  Use with: 

  - GP2Y0A21YK
  - GP2D120XJ00F
  - GP2Y0A02YK0F
  - GP2Y0A41SK0F
*/

new five.Proximity({
  controller: "GP2Y0A21YK",
  pin: "A0"
});

Proximity

Analog GP2Y0A710K0F

new five.Proximity({
  controller: "GP2Y0A710K0F",
  pin: "A0"
});

Proximity

HCSR04/Parallax Ping *

new five.Proximity({
  controller: "HCSR04",
  pin: 7
});

Ping

* It is absolutely REQUIRED to flash your board with a special version of StandardFirmata (PingFirmata). Instructions are here

MB1000 LV-MaxSonar-EZ0
new five.Proximity({
  controller: "MB1000",
  pin: "A0"
});
MB1003 HRLV-MaxSonar-EZ0
new five.Proximity({
  controller: "MB1003",
  pin: "A0"
});
MB1230 XL-MaxSonar-EZ3
new five.Proximity({
  controller: "MB1230",
  pin: "A0"
});

Sonar

LIDAR-Lite

new five.Proximity({
  controller: "LIDARLITE"
});

LIDAR

SRF10

new five.Proximity({
  controller: "SRF10"
});

SRF10

Usage

var five = require("johnny-five");
var board = new five.Board();

board.on("ready", function() {
  var proximity = new five.IR.Proximity({
    controller: ...,
    pin: "A0"
  });

  proximity.on("data", function() {
    console.log("inches: ", this.inches);
    console.log("cm: ", this.cm);
  });
});

Events

  • data The "data" event is fired as frequently as the user defined freq will allow in milliseconds.

  • change The "change" event is fired when the distance to obstruction reading changes within the observable range of the sensor.

PingFirmata

For use with:

The above listed devices require a special version of Firmata (shown below) to be loaded onto the Arduino in order to function properly. This is only necessary for the components listed in this section!

Copy and Paste the following into the Arduino IDE and click the Upload button:

/*
 * Firmata is a generic protocol for communicating with microcontrollers
 * from software on a host computer. It is intended to work with
 * any host computer software package.
 *
 * To download a host software package, please clink on the following link
 * to open the download page in your default browser.
 *
 * http://firmata.org/wiki/Download
 */

/*
  Copyright (C) 2006-2008 Hans-Christoph Steiner.  All rights reserved.
  Copyright (C) 2010-2011 Paul Stoffregen.  All rights reserved.
  Copyright (C) 2009 Shigeru Kobayashi.  All rights reserved.
  Copyright (C) 2009-2011 Jeff Hoefs.  All rights reserved.
  Copyright (C) 2012 Julian Gaultier.  All rights reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.
 
  See file LICENSE.txt for further informations on licensing terms.

  formatted using the GNU C formatting and indenting
*/

/* 
 * TODO: use Program Control to load stored profiles from EEPROM
 */

#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>

// move the following defines to Firmata.h?
#define I2C_WRITE B00000000
#define I2C_READ B00001000
#define I2C_READ_CONTINUOUSLY B00010000
#define I2C_STOP_READING B00011000
#define I2C_READ_WRITE_MODE_MASK B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000

#define MAX_QUERIES 8
#define MINIMUM_SAMPLING_INTERVAL 10

#define REGISTER_NOT_SPECIFIED -1
#define PING_READ                0x75 // send a pulse in command

/*==============================================================================
 * GLOBAL VARIABLES
 *============================================================================*/

/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting

/* digital input ports */
byte reportPINs[TOTAL_PORTS];       // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS];     // previous 8 bits sent

/* pins configuration */
byte pinConfig[TOTAL_PINS];         // configuration of every pin
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else
int pinState[TOTAL_PINS];           // any value that has been written

/* timer variables */
unsigned long currentMillis;        // store the current value from millis()
unsigned long previousMillis;       // for comparison with currentMillis
int samplingInterval = 19;          // how often to run the main loop (in ms)

/* i2c data */
struct i2c_device_info {
  byte addr;
  byte reg;
  byte bytes;
};

/* for i2c read continuous more */
i2c_device_info query[MAX_QUERIES];

byte i2cRxData[32];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
unsigned int i2cReadDelayTime = 0;  // default delay time between i2c read request and Wire.requestFrom()

Servo servos[MAX_SERVOS];
/*==============================================================================
 * FUNCTIONS
 *============================================================================*/

void readAndReportData(byte address, int theRegister, byte numBytes) {
  // allow I2C requests that don't require a register read
  // for example, some devices using an interrupt pin to signify new data available
  // do not always require the register read so upon interrupt you call Wire.requestFrom()  
  if (theRegister != REGISTER_NOT_SPECIFIED) {
    Wire.beginTransmission(address);
    #if ARDUINO >= 100
    Wire.write((byte)theRegister);
    #else
    Wire.send((byte)theRegister);
    #endif
    Wire.endTransmission();
    delayMicroseconds(i2cReadDelayTime);  // delay is necessary for some devices such as WiiNunchuck
  } else {
    theRegister = 0;  // fill the register with a dummy value
  }

  Wire.requestFrom(address, numBytes);  // all bytes are returned in requestFrom

  // check to be sure correct number of bytes were returned by slave
  if(numBytes == Wire.available()) {
    i2cRxData[0] = address;
    i2cRxData[1] = theRegister;
    for (int i = 0; i < numBytes; i++) {
      #if ARDUINO >= 100
      i2cRxData[2 + i] = Wire.read();
      #else
      i2cRxData[2 + i] = Wire.receive();
      #endif
    }
  }
  else {
    if(numBytes > Wire.available()) {
      Firmata.sendString("I2C Read Error: Too many bytes received");
    } else {
      Firmata.sendString("I2C Read Error: Too few bytes received"); 
    }
  }

  // send slave address, register and received bytes
  Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}

void outputPort(byte portNumber, byte portValue, byte forceSend)
{
  // pins not configured as INPUT are cleared to zeros
  portValue = portValue & portConfigInputs[portNumber];
  // only send if the value is different than previously sent
  if(forceSend || previousPINs[portNumber] != portValue) {
    Firmata.sendDigitalPort(portNumber, portValue);
    previousPINs[portNumber] = portValue;
  }
}

/* -----------------------------------------------------------------------------
 * check all the active digital inputs for change of state, then add any events
 * to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
  /* Using non-looping code allows constants to be given to readPort().
   * The compiler will apply substantial optimizations if the inputs
   * to readPort() are compile-time constants. */
  if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
  if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
  if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
  if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
  if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
  if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
  if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
  if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
  if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
  if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
  if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
  if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
  if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
  if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
  if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
  if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}

// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
 * two bit-arrays that track Digital I/O and PWM status
 */
void setPinModeCallback(byte pin, int mode)
{
  if (pinConfig[pin] == I2C && isI2CEnabled && mode != I2C) {
    // disable i2c so pins can be used for other functions
    // the following if statements should reconfigure the pins properly
    disableI2CPins();
  }
  if (IS_PIN_SERVO(pin) && mode != SERVO && servos[PIN_TO_SERVO(pin)].attached()) {
    servos[PIN_TO_SERVO(pin)].detach();
  }
  if (IS_PIN_ANALOG(pin)) {
    reportAnalogCallback(PIN_TO_ANALOG(pin), mode == ANALOG ? 1 : 0); // turn on/off reporting
  }
  if (IS_PIN_DIGITAL(pin)) {
    if (mode == INPUT) {
      portConfigInputs[pin/8] |= (1 << (pin & 7));
    } else {
      portConfigInputs[pin/8] &= ~(1 << (pin & 7));
    }
  }
  pinState[pin] = 0;
  switch(mode) {
  case ANALOG:
    if (IS_PIN_ANALOG(pin)) {
      if (IS_PIN_DIGITAL(pin)) {
        pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
        digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
      }
      pinConfig[pin] = ANALOG;
    }
    break;
  case INPUT:
    if (IS_PIN_DIGITAL(pin)) {
      pinMode(PIN_TO_DIGITAL(pin), INPUT); // disable output driver
      digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
      pinConfig[pin] = INPUT;
    }
    break;
  case OUTPUT:
    if (IS_PIN_DIGITAL(pin)) {
      digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable PWM
      pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
      pinConfig[pin] = OUTPUT;
    }
    break;
  case PWM:
    if (IS_PIN_PWM(pin)) {
      pinMode(PIN_TO_PWM(pin), OUTPUT);
      analogWrite(PIN_TO_PWM(pin), 0);
      pinConfig[pin] = PWM;
    }
    break;
  case SERVO:
    if (IS_PIN_SERVO(pin)) {
      pinConfig[pin] = SERVO;
      if (!servos[PIN_TO_SERVO(pin)].attached()) {
          servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin));
      }
    }
    break;
  case I2C:
    if (IS_PIN_I2C(pin)) {
      // mark the pin as i2c
      // the user must call I2C_CONFIG to enable I2C for a device
      pinConfig[pin] = I2C;
    }
    break;
  default:
    Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
  }
  // TODO: save status to EEPROM here, if changed
}

void analogWriteCallback(byte pin, int value)
{
  if (pin < TOTAL_PINS) {
    switch(pinConfig[pin]) {
    case SERVO:
      if (IS_PIN_SERVO(pin))
        servos[PIN_TO_SERVO(pin)].write(value);
        pinState[pin] = value;
      break;
    case PWM:
      if (IS_PIN_PWM(pin))
        analogWrite(PIN_TO_PWM(pin), value);
        pinState[pin] = value;
      break;
    }
  }
}

void digitalWriteCallback(byte port, int value)
{
  byte pin, lastPin, mask=1, pinWriteMask=0;

  if (port < TOTAL_PORTS) {
    // create a mask of the pins on this port that are writable.
    lastPin = port*8+8;
    if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
    for (pin=port*8; pin < lastPin; pin++) {
      // do not disturb non-digital pins (eg, Rx & Tx)
      if (IS_PIN_DIGITAL(pin)) {
        // only write to OUTPUT and INPUT (enables pullup)
        // do not touch pins in PWM, ANALOG, SERVO or other modes
        if (pinConfig[pin] == OUTPUT || pinConfig[pin] == INPUT) {
          pinWriteMask |= mask;
          pinState[pin] = ((byte)value & mask) ? 1 : 0;
        }
      }
      mask = mask << 1;
    }
    writePort(port, (byte)value, pinWriteMask);
  }
}


// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
 */
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
  if (analogPin < TOTAL_ANALOG_PINS) {
    if(value == 0) {
      analogInputsToReport = analogInputsToReport &~ (1 << analogPin);
    } else {
      analogInputsToReport = analogInputsToReport | (1 << analogPin);
    }
  }
  // TODO: save status to EEPROM here, if changed
}

void reportDigitalCallback(byte port, int value)
{
  if (port < TOTAL_PORTS) {
    reportPINs[port] = (byte)value;
  }
  // do not disable analog reporting on these 8 pins, to allow some
  // pins used for digital, others analog.  Instead, allow both types
  // of reporting to be enabled, but check if the pin is configured
  // as analog when sampling the analog inputs.  Likewise, while
  // scanning digital pins, portConfigInputs will mask off values from any
  // pins configured as analog
}

/*==============================================================================
 * SYSEX-BASED commands
 *============================================================================*/

void sysexCallback(byte command, byte argc, byte *argv)
{
  byte mode;
  byte slaveAddress;
  byte slaveRegister;
  byte data;
  unsigned int delayTime; 
  
  switch(command) {
  case I2C_REQUEST:
    mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
    if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
      Firmata.sendString("10-bit addressing mode is not yet supported");
      return;
    }
    else {
      slaveAddress = argv[0];
    }

    switch(mode) {
    case I2C_WRITE:
      Wire.beginTransmission(slaveAddress);
      for (byte i = 2; i < argc; i += 2) {
        data = argv[i] + (argv[i + 1] << 7);
        #if ARDUINO >= 100
        Wire.write(data);
        #else
        Wire.send(data);
        #endif
      }
      Wire.endTransmission();
      delayMicroseconds(70);
      break;
    case I2C_READ:
      if (argc == 6) {
        // a slave register is specified
        slaveRegister = argv[2] + (argv[3] << 7);
        data = argv[4] + (argv[5] << 7);  // bytes to read
        readAndReportData(slaveAddress, (int)slaveRegister, data);
      }
      else {
        // a slave register is NOT specified
        data = argv[2] + (argv[3] << 7);  // bytes to read
        readAndReportData(slaveAddress, (int)REGISTER_NOT_SPECIFIED, data);
      }
      break;
    case I2C_READ_CONTINUOUSLY:
      if ((queryIndex + 1) >= MAX_QUERIES) {
        // too many queries, just ignore
        Firmata.sendString("too many queries");
        break;
      }
      queryIndex++;
      query[queryIndex].addr = slaveAddress;
      query[queryIndex].reg = argv[2] + (argv[3] << 7);
      query[queryIndex].bytes = argv[4] + (argv[5] << 7);
      break;
    case I2C_STOP_READING:
    byte queryIndexToSkip;      
      // if read continuous mode is enabled for only 1 i2c device, disable
      // read continuous reporting for that device
      if (queryIndex <= 0) {
        queryIndex = -1;        
      } else {
        // if read continuous mode is enabled for multiple devices,
        // determine which device to stop reading and remove it's data from
        // the array, shifiting other array data to fill the space
        for (byte i = 0; i < queryIndex + 1; i++) {
          if (query[i].addr = slaveAddress) {
            queryIndexToSkip = i;
            break;
          }
        }
        
        for (byte i = queryIndexToSkip; i<queryIndex + 1; i++) {
          if (i < MAX_QUERIES) {
            query[i].addr = query[i+1].addr;
            query[i].reg = query[i+1].addr;
            query[i].bytes = query[i+1].bytes; 
          }
        }
        queryIndex--;
      }
      break;
    default:
      break;
    }
    break;
  case I2C_CONFIG:
    delayTime = (argv[0] + (argv[1] << 7));

    if(delayTime > 0) {
      i2cReadDelayTime = delayTime;
    }

    if (!isI2CEnabled) {
      enableI2CPins();
    }
    
    break;
  case SERVO_CONFIG:
    if(argc > 4) {
      // these vars are here for clarity, they'll optimized away by the compiler
      byte pin = argv[0];
      int minPulse = argv[1] + (argv[2] << 7);
      int maxPulse = argv[3] + (argv[4] << 7);

      if (IS_PIN_SERVO(pin)) {
        if (servos[PIN_TO_SERVO(pin)].attached())
          servos[PIN_TO_SERVO(pin)].detach();
        servos[PIN_TO_SERVO(pin)].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
        setPinModeCallback(pin, SERVO);
      }
    }
    break;
  case SAMPLING_INTERVAL:
    if (argc > 1) {
      samplingInterval = argv[0] + (argv[1] << 7);
      if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
        samplingInterval = MINIMUM_SAMPLING_INTERVAL;
      }      
    } else {
      //Firmata.sendString("Not enough data");
    }
    break;
  case EXTENDED_ANALOG:
    if (argc > 1) {
      int val = argv[1];
      if (argc > 2) val |= (argv[2] << 7);
      if (argc > 3) val |= (argv[3] << 14);
      analogWriteCallback(argv[0], val);
    }
    break;
  case CAPABILITY_QUERY:
    Serial.write(START_SYSEX);
    Serial.write(CAPABILITY_RESPONSE);
    for (byte pin=0; pin < TOTAL_PINS; pin++) {
      if (IS_PIN_DIGITAL(pin)) {
        Serial.write((byte)INPUT);
        Serial.write(1);
        Serial.write((byte)OUTPUT);
        Serial.write(1);
      }
      if (IS_PIN_ANALOG(pin)) {
        Serial.write(ANALOG);
        Serial.write(10);
      }
      if (IS_PIN_PWM(pin)) {
        Serial.write(PWM);
        Serial.write(8);
      }
      if (IS_PIN_SERVO(pin)) {
        Serial.write(SERVO);
        Serial.write(14);
      }
      if (IS_PIN_I2C(pin)) {
        Serial.write(I2C);
        Serial.write(1);  // to do: determine appropriate value 
      }
      Serial.write(127);
    }
    Serial.write(END_SYSEX);
    break;
  case PIN_STATE_QUERY:
    if (argc > 0) {
      byte pin=argv[0];
      Serial.write(START_SYSEX);
      Serial.write(PIN_STATE_RESPONSE);
      Serial.write(pin);
      if (pin < TOTAL_PINS) {
        Serial.write((byte)pinConfig[pin]);
  Serial.write((byte)pinState[pin] & 0x7F);
  if (pinState[pin] & 0xFF80) Serial.write((byte)(pinState[pin] >> 7) & 0x7F);
  if (pinState[pin] & 0xC000) Serial.write((byte)(pinState[pin] >> 14) & 0x7F);
      }
      Serial.write(END_SYSEX);
    }
    break;
  case ANALOG_MAPPING_QUERY:
    Serial.write(START_SYSEX);
    Serial.write(ANALOG_MAPPING_RESPONSE);
    for (byte pin=0; pin < TOTAL_PINS; pin++) {
      Serial.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
    }
    Serial.write(END_SYSEX);
    break;
  case PING_READ:{
      byte pulseDurationArray[4] = {
        (argv[2] & 0x7F) | ((argv[3] & 0x7F) << 7)
       ,(argv[4] & 0x7F) | ((argv[5] & 0x7F) << 7)
       ,(argv[6] & 0x7F) | ((argv[7] & 0x7F) << 7)
       ,(argv[8] & 0x7F) | ((argv[9] & 0x7F) << 7)
      };
      unsigned long pulseDuration = ((unsigned long)pulseDurationArray[0] << 24)
              + ((unsigned long)pulseDurationArray[1] << 16)
              + ((unsigned long)pulseDurationArray[2] << 8)
              + ((unsigned long)pulseDurationArray[3]);
      if(argv[1] == HIGH){
        pinMode(argv[0],OUTPUT);
        digitalWrite(argv[0],LOW);
        delayMicroseconds(2);
        digitalWrite(argv[0],HIGH);
        delayMicroseconds(pulseDuration);
        digitalWrite(argv[0],LOW);
      } else {
        digitalWrite(argv[0],HIGH);
        delayMicroseconds(2);
        digitalWrite(argv[0],LOW);
        delayMicroseconds(pulseDuration);
        digitalWrite(argv[0],HIGH);
      }
      unsigned long duration;
      byte responseArray[5];
      byte timeoutArray[4] = {
          (argv[10] & 0x7F) | ((argv[11] & 0x7F) << 7)
         ,(argv[12] & 0x7F) | ((argv[13] & 0x7F) << 7)
         ,(argv[14] & 0x7F) | ((argv[15] & 0x7F) << 7)
         ,(argv[16] & 0x7F) | ((argv[17] & 0x7F) << 7)
      };
      unsigned long timeout = ((unsigned long)timeoutArray[0] << 24)
                + ((unsigned long)timeoutArray[1] << 16)
                + ((unsigned long)timeoutArray[2] << 8)
                + ((unsigned long)timeoutArray[3]);
      pinMode(argv[0],INPUT);
      duration = pulseIn(argv[0], argv[1],timeout);
      responseArray[0] = argv[0];
      responseArray[1] = (((unsigned long)duration >> 24) & 0xFF) ;
      responseArray[2] = (((unsigned long)duration >> 16) & 0xFF) ;
      responseArray[3] = (((unsigned long)duration >> 8) & 0xFF);
      responseArray[4] = (((unsigned long)duration & 0xFF));
      Firmata.sendSysex(PING_READ,5,responseArray);
      break;
    }
  }
}

void enableI2CPins()
{
  byte i;
  // is there a faster way to do this? would probaby require importing 
  // Arduino.h to get SCL and SDA pins
  for (i=0; i < TOTAL_PINS; i++) {
    if(IS_PIN_I2C(i)) {
      // mark pins as i2c so they are ignore in non i2c data requests
      setPinModeCallback(i, I2C);
    } 
  }
   
  isI2CEnabled = true; 
  
  // is there enough time before the first I2C request to call this here?
  Wire.begin();
}

/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
    isI2CEnabled = false;
    // disable read continuous mode for all devices
    queryIndex = -1;
    // uncomment the following if or when the end() method is added to Wire library
    // Wire.end();
}

/*==============================================================================
 * SETUP()
 *============================================================================*/

void systemResetCallback()
{
  // initialize a defalt state
  // TODO: option to load config from EEPROM instead of default
  if (isI2CEnabled) {
    disableI2CPins();
  }
  for (byte i=0; i < TOTAL_PORTS; i++) {
    reportPINs[i] = false;      // by default, reporting off
    portConfigInputs[i] = 0;  // until activated
    previousPINs[i] = 0;
  }
  // pins with analog capability default to analog input
  // otherwise, pins default to digital output
  for (byte i=0; i < TOTAL_PINS; i++) {
    if (IS_PIN_ANALOG(i)) {
      // turns off pullup, configures everything
      setPinModeCallback(i, ANALOG);
    } else {
      // sets the output to 0, configures portConfigInputs
      setPinModeCallback(i, OUTPUT);
    }
  }
  // by default, do not report any analog inputs
  analogInputsToReport = 0;

  /* send digital inputs to set the initial state on the host computer,
   * since once in the loop(), this firmware will only send on change */
  /*
  TODO: this can never execute, since no pins default to digital input
        but it will be needed when/if we support EEPROM stored config
  for (byte i=0; i < TOTAL_PORTS; i++) {
    outputPort(i, readPort(i, portConfigInputs[i]), true);
  }
  */
}

void setup() 
{
  Firmata.setFirmwareVersion(FIRMATA_MAJOR_VERSION, FIRMATA_MINOR_VERSION);

  Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
  Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
  Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
  Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
  Firmata.attach(SET_PIN_MODE, setPinModeCallback);
  Firmata.attach(START_SYSEX, sysexCallback);
  Firmata.attach(SYSTEM_RESET, systemResetCallback);

  Firmata.begin(57600);
  systemResetCallback();  // reset to default config
}

/*==============================================================================
 * LOOP()
 *============================================================================*/
void loop() 
{
  byte pin, analogPin;

  /* DIGITALREAD - as fast as possible, check for changes and output them to the
   * FTDI buffer using Serial.print()  */
  checkDigitalInputs();  

  /* SERIALREAD - processing incoming messagse as soon as possible, while still
   * checking digital inputs.  */
  while(Firmata.available())
    Firmata.processInput();

  /* SEND FTDI WRITE BUFFER - make sure that the FTDI buffer doesn't go over
   * 60 bytes. use a timer to sending an event character every 4 ms to
   * trigger the buffer to dump. */

  currentMillis = millis();
  if (currentMillis - previousMillis > samplingInterval) {
    previousMillis += samplingInterval;
    /* ANALOGREAD - do all analogReads() at the configured sampling interval */
    for(pin=0; pin<TOTAL_PINS; pin++) {
      if (IS_PIN_ANALOG(pin) && pinConfig[pin] == ANALOG) {
        analogPin = PIN_TO_ANALOG(pin);
        if (analogInputsToReport & (1 << analogPin)) {
          Firmata.sendAnalog(analogPin, analogRead(analogPin));
        }
      }
    }
    // report i2c data for all device with read continuous mode enabled
    if (queryIndex > -1) {
      for (byte i = 0; i < queryIndex + 1; i++) {
        readAndReportData(query[i].addr, query[i].reg, query[i].bytes);
      }
    }
  }
}
Clone this wiki locally