Skip to content

Commit aba1d76

Browse files
committed
version 0.11
1 parent 2101f67 commit aba1d76

File tree

4 files changed

+28
-4
lines changed

4 files changed

+28
-4
lines changed

DESCRIPTION

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
Package: fwildclusterboot
22
Title: Fast Wild Cluster Bootstrap Inference for Linear Models
3-
Version: 0.10
3+
Version: 0.11
44
Authors@R:
55
c(
66
person(given = "Alexander",

NEWS.md

+18
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,21 @@
1+
# fwildclusterboot 0.11
2+
3+
+ This release introduces new wild cluster bootstrap variants as described in [MacKinnon, Nielsen & Webb (2022)](https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1485.pdf). The implementation is still quite bare-bone: it only allows to test hypotheses of the form $\beta_k = 0$ vs $\beta_k \neq 0$, does not allow for regression weights or fixed effects, and further does not compute confidence intervals.
4+
5+
You can run one of the 'new' variants - e.g. the "WCR13", by specifying the `boot_algo` function argument accordingly:
6+
7+
```
8+
boottest(
9+
lm_fit,
10+
param = ~treatment,
11+
clustid = ~group_id1,
12+
B = 9999,
13+
impose_null = TRUE,
14+
boot_algo = "WCR13"
15+
)
16+
```
17+
18+
119
# fwildclusterboot 0.10
220

321
+ introduces a range of new methods: `nobs()`, `pval()`, `teststat()`, `confint()` and `print()`

README.Rmd

+3-1
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,8 @@ knitr::opts_chunk$set(
3434

3535
The `{fwildclusterboot}` package provides a native R implementation of the fast wild cluster bootstrap algorithm developed in [Roodman et al (2019)](https://econpapers.repec.org/paper/qedwpaper/1406.htm) for regression objects in R.
3636

37+
Additionally, it provides support for multiple wild cluster bootstrap variants as described in [MacKinnon, Nielsen & Webb (2022)](https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1485.pdf).
38+
3739
It also ports functionality of [WildBootTests.jl](https://github.com/droodman/WildBootTests.jl) to R via the [JuliaConnectoR](https://github.com/stefan-m-lenz/JuliaConnectoR).
3840

3941
The package's central function is `boottest()`. It allows to test univariate hypotheses using a wild cluster bootstrap at extreme speed: via the 'fast' algorithm, it is possible to run a wild cluster bootstrap with $B = 100.000$ iterations in less than a second!
@@ -139,4 +141,4 @@ If you are in `R`, you can simply run the following command to get the BibTeX ci
139141
citation("fwildclusterboot")
140142
```
141143

142-
Alternatively, if you prefer to cite the "Fast & Wild" paper by Roodman et al, I would be super happy if you mentioned `{fwildclusterboot}` in a footnote!
144+
Alternatively, if you prefer to cite the "Fast & Wild" paper by Roodman et al, it would be great if you mentioned `{fwildclusterboot}` in a footnote =) !

README.md

+6-2
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,10 @@ the fast wild cluster bootstrap algorithm developed in [Roodman et al
2727
(2019)](https://econpapers.repec.org/paper/qedwpaper/1406.htm) for
2828
regression objects in R.
2929

30+
Additionally, it provides support for multiple wild cluster bootstrap
31+
variants as described in [MacKinnon, Nielsen & Webb
32+
(2022)](https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1485.pdf).
33+
3034
It also ports functionality of
3135
[WildBootTests.jl](https://github.com/droodman/WildBootTests.jl) to R
3236
via the
@@ -159,5 +163,5 @@ citation("fwildclusterboot")
159163
```
160164

161165
Alternatively, if you prefer to cite the “Fast & Wild” paper by Roodman
162-
et al, I would be super happy if you mentioned `{fwildclusterboot}` in a
163-
footnote!
166+
et al, it would be great if you mentioned `{fwildclusterboot}` in a
167+
footnote =) !

0 commit comments

Comments
 (0)