@@ -199,30 +199,9 @@ boot_algo2 <- function(preprocessed_object, boot_iter, point_estimate, impose_nu
199199 S_diag_XinvXXRu_S_b <- Matrix.utils :: aggregate.Matrix(diag_XinvXXRuS_b , clustid [x ])
200200 K_b <- S_diag_XinvXXRu_S_b - tcrossprod(SXinvXXrX_invXX , SuXb )
201201
202- bigstatsr <- FALSE
203- if (bigstatsr == FALSE ){
204- C <- eigenMapMatMult(as.matrix(K_a ), v , nthreads )
205- D <- eigenMapMatMult(as.matrix(K_b ), v , nthreads )
206- } else if (bigstatr == TRUE ){
202+ C <- eigenMapMatMult(as.matrix(K_a ), v , nthreads )
203+ D <- eigenMapMatMult(as.matrix(K_b ), v , nthreads )
207204
208- # matrix multiplication via bigstatsr
209- C_fbm <- FBM(dim(K_a )[1 ], B )
210- D_fbm <- FBM(dim(K_b )[1 ], B )
211- # C
212- big_apply(C , a.FUN = function (C_fbm , ind , K_a , v ) {
213- C_fbm [, ind ] <- tcrossprod(K_a , v [ind , ])
214- NULL # # you don't want to return anything here
215- }, a.combine = ' c' , ncores = nthreads , K_a = K_a , v = v )
216- # D
217- big_apply(D , a.FUN = function (D_fbm , ind , K_b , v ) {
218- D_fbm [, ind ] <- tcrossprod(K_b , v [ind , ])
219- NULL # # you don't want to return anything here
220- }, a.combine = ' c' , ncores = nthreads , K_b = K_b , v = v )
221-
222- C <- C_fbm []
223- D <- D_fbm []
224-
225- }
226205
227206 CC [[x ]] <- colSums(C * C )
228207 DD [[x ]] <- colSums(D * D )
@@ -249,32 +228,9 @@ boot_algo2 <- function(preprocessed_object, boot_iter, point_estimate, impose_nu
249228 S_diag_XinvXXRu_S_b <- S_diag_XinvXXRu_S_b - prod_b
250229 K_b <- S_diag_XinvXXRu_S_b - tcrossprod(SXinvXXrX_invXX , SuXb )
251230
252- bigstatsr <- FALSE
253- if (bigstatsr == FALSE ){
254-
255- C <- eigenMapMatMult(as.matrix(K_a ), v , nthreads )
256- D <- eigenMapMatMult(as.matrix(K_b ), v , nthreads )
257-
258- } else if (bigstatr == TRUE ){
259-
260- # matrix multiplication via bigstatsr
261- C_fbm <- FBM(dim(K_a )[1 ], B )
262- D_fbm <- FBM(dim(K_b )[1 ], B )
263- # C
264- big_apply(C , a.FUN = function (C_fbm , ind , K_a , v ) {
265- C_fbm [, ind ] <- tcrossprod(K_a , v [ind , ])
266- NULL # # you don't want to return anything here
267- }, a.combine = ' c' , ncores = nthreads , K_a = K_a , v = v )
268- # D
269- big_apply(D , a.FUN = function (D_fbm , ind , K_b , v ) {
270- D_fbm [, ind ] <- tcrossprod(K_b , v [ind , ])
271- NULL # # you don't want to return anything here
272- }, a.combine = ' c' , ncores = nthreads , K_b = K_b , v = v )
273-
274- C <- C_fbm []
275- D <- D_fbm []
231+ C <- eigenMapMatMult(as.matrix(K_a ), v , nthreads )
232+ D <- eigenMapMatMult(as.matrix(K_b ), v , nthreads )
276233
277- }
278234 CC [[x ]] <- colSums(C * C )
279235 DD [[x ]] <- colSums(D * D )
280236 CD [[x ]] <- colSums(C * D )
0 commit comments