-
Notifications
You must be signed in to change notification settings - Fork 0
/
multitonenet.py
773 lines (628 loc) · 31.8 KB
/
multitonenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
import numpy as np
from sklearn import metrics
import os
import sys
import shutil
import tensorflow as tf
from keras import backend as K
from keras.engine import Layer
from keras.constraints import unit_norm
from keras.utils import np_utils
from keras.layers import TimeDistributed,ZeroPadding1D,Masking, Reshape, Conv2D,Conv1D, Activation, MaxPooling1D, GlobalAveragePooling1D, AveragePooling1D, Dense, GRU,Bidirectional,multiply, subtract, concatenate, add, Lambda
from keras.layers.normalization import BatchNormalization
from keras.layers.core import Dropout
from keras.engine.input_layer import Input
from keras.models import Model
from keras.utils import Sequence
from keras.optimizers import Adam,SGD,Nadam
from adabound import AdaBound
from keras.preprocessing.sequence import pad_sequences
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from wers import *
from keras_transformer.position import TransformerCoordinateEmbedding
from keras_transformer.transformer import TransformerACT, TransformerBlock
from keras_self_attention import SeqSelfAttention
from tensorflow.python.ops import math_ops as tf_math_ops
from tensorflow.python.ops import ctc_ops
from itertools import groupby
from layer_normalization import LayerNormalization
from keras.initializers import TruncatedNormal
from keras_pos_embd import TrigPosEmbedding
from transformer import SelfAttention, AddPosEncoding
# from flip_gradient import GradientReversal
config = tf.ConfigProto()
config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
session = tf.Session(config=config)
# 设置session
K.set_session(session)
class OutputModelCheckpoint(ModelCheckpoint):
def __init__(self,model,filepath, monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto', period=1):
self.single_model = model
super(OutputModelCheckpoint,self).__init__(filepath, monitor, verbose,save_best_only, save_weights_only,mode, period)
def set_model(self, model):
super(OutputModelCheckpoint,self).set_model(self.single_model)
def reverse_gradient(X, hp_lambda):
'''Flips the sign of the incoming gradient during training.'''
try:
reverse_gradient.num_calls += 1
except AttributeError:
reverse_gradient.num_calls = 1
grad_name = "GradientReversal%d" % reverse_gradient.num_calls
@tf.RegisterGradient(grad_name)
def _flip_gradients(op, grad):
return [tf.negative(grad) * hp_lambda]
g = K.get_session().graph
with g.gradient_override_map({'Identity': grad_name}):
y = tf.identity(X)
return y
class GradientReversal(Layer):
'''Flip the sign of gradient during training.'''
def __init__(self, hp_lambda=1.0, **kwargs):
super(GradientReversal, self).__init__(**kwargs)
self.supports_masking = False
self.hp_lambda = hp_lambda
def build(self, input_shape):
self.trainable_weights = []
def call(self, x, mask=None):
return reverse_gradient(x, self.hp_lambda)
def get_output_shape_for(self, input_shape):
return input_shape
def get_config(self):
config = {'hp_lambda': self.hp_lambda}
base_config = super(GradientReversal, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class LR_WarmUP_Exponential_Decay(Callback):
def __init__(self, lr, warmup_epochs, decay_k=1):
self.num_passed_batchs = 0
self.warmup_epochs = warmup_epochs
self.lr = lr
self.decay_k = decay_k # 指数衰减超参
def on_batch_begin(self, batch, logs=None):
# params是模型自动传递给Callback的一些参数
if self.params['steps'] == None:
self.steps_per_epoch = np.ceil(1. * self.params['samples'] / self.params['batch_size'])
else:
self.steps_per_epoch = self.params['steps']
if self.num_passed_batchs < self.steps_per_epoch * self.warmup_epochs:
# 前10个epoch中,学习率线性地从零增加到0.001
lr_now = self.lr * (self.num_passed_batchs + 1) / self.steps_per_epoch / self.warmup_epochs
K.set_value(self.model.optimizer.lr, lr_now)
else:
# 10个epoch后,学习率线开始指数衰减
lr_now = self.lr * (self.decay_k / (self.num_passed_batchs / self.steps_per_epoch) ** 0.5)
K.set_value(self.model.optimizer.lr, lr_now)
sys.stdout.write(' '*100+'\r') # 先用空格清屏
sys.stdout.write("LR = "+str(lr_now)+'\r')
self.num_passed_batchs += 1
# def on_epoch_end(sef, epoch, logs={}):
# sys.stdout.write('\n')
class LR_Segment_Exponential_Decay(Callback):
def __init__(self, lr, segment_epochs, decay_k=1):
self.num_passed_batchs = 0
self.segment_epochs = segment_epochs
self.lr = lr
self.decay_k = decay_k # 指数衰减超参
def on_batch_begin(self, batch, logs=None):
# params是模型自动传递给Callback的一些参数
if self.params['steps'] == None:
self.steps_per_epoch = np.ceil(1. * self.params['samples'] / self.params['batch_size'])
else:
self.steps_per_epoch = self.params['steps']
if self.num_passed_batchs < self.steps_per_epoch * self.segment_epochs:
lr_now = self.lr #/ 2.0
#K.set_value(self.model.optimizer.lr, lr_now)
else:
# 学习率线开始指数衰减
history_epochs = self.segment_epochs*self.steps_per_epoch
lr_now = self.lr * (self.decay_k / ((self.num_passed_batchs-history_epochs+1) / self.steps_per_epoch) ** 0.5)
K.set_value(self.model.optimizer.lr, lr_now)
sys.stdout.write(' '*200+'\r') # 先用空格清屏
sys.stdout.write("LR = "+str(lr_now)+'\r')
self.num_passed_batchs += 1
# def on_epoch_end(sef, epoch, logs={}):
# sys.stdout.write('\n')
class MetricCallback(Callback):
def __init__(self, test_func, x, y, input_length, batch_size=1, test_num=32,info='this is test'):
self.test_func = test_func
self.x = x
self.y = y
self.batch_size = batch_size
self.test_num = test_num if test_num != None else len(self.x)
self.input_length=input_length
self.info = info
self.ctc_class = Ctc_Decode(batch_size=None,timestep=None, nclass=6)
def on_epoch_end(self, epoch, logs={}):
print('\n'+self.info)
y_pred = []
prob = []
for i in range(self.test_num):
y_pred_tmp, prob_tmp = decode_batch(self.test_func, np.array([self.x[i]]),[self.input_length[i]],self.ctc_class)
y_pred.extend(y_pred_tmp)
prob.extend(prob_tmp)
y_pred = [''.join([str(int(p)).replace('-1', '') for p in pred]) for pred in y_pred]
y_true = [''.join([str(t) for t in true]) for true in self.y[0:self.test_num]]
with open('tmp5', 'a', encoding='utf-8') as f:
f.write( str(list(zip(y_pred, y_true))) + '\n' )
_, mean = wers(y_true, y_pred)
print('WER(%s):'%(self.test_num), mean,'\n')
del y_pred_tmp
del prob_tmp
def get_data(data_path_file, root, stride=4, test_num=1024):
with open(data_path_file,'r',encoding='utf-8') as f:
data = f.readlines()
random.shuffle(data)
content=[]
label = []#tone type
input_length = []
#tone2index = {" ":0,"0":1,"1":2,"2":3,"3":4,"4":5}
if test_num != None:
data = data[:test_num]
for d in data:#[:test_num]:
tmp = d.split('\t')
x = lowf_feature(os.path.join(root, tmp[0]+'.wav'), save_path='/data/gq/sjc/Version_3/data1')
content.append(x)
input_length.append(math.ceil(x.shape[0]/stride))#-2)
label_tmp = [int(i) for i in tmp[1].split(' ')]
label.append(label_tmp)
# max_audio_lens = max([i.shape[0] for i in content])
# for i in range(test_num):
# if content[i].shape[0] < max_audio_lens:
# zero = np.zeros((max_audio_lens-content[i].shape[0],content[i].shape[1]),dtype=np.float32)
# content[i] = np.vstack((content[i],zero))
return content, label, input_length
def lowf_feature(audio_path, save_path):
audio_root = os.path.dirname(audio_path)
save_path_f = os.path.join(save_path, '/'.join(audio_root.split('/')[-2:]))
name = os.path.basename(audio_path).split('.')[0] + '.npy'
if not os.path.exists(save_path_f):
os.makedirs(save_path_f)
path = os.path.join(save_path_f, name)
if os.path.isfile(path) and os.path.getsize(path) > 256:
x = np.load(path)
else:
# x = melspectrogram_feature(audio_path, save_path_f)
x = extract_features_shennong(audio_path, save_path_f)
return x#np.expand_dims(x, axis=-1)
from shennong.audio import Audio
from shennong.features.processor.filterbank import FilterbankProcessor
from shennong.features.processor.pitch import (PitchProcessor, PitchPostProcessor)
def extract_features_shennong(audio_path, save_path):
audio = Audio.load(audio_path)
# 80-dim fbank with 1-dim energe
processor = FilterbankProcessor(sample_rate=audio.sample_rate, num_bins=40, use_energy=False)#80 fbank + 1 energy
fbank = processor.process(audio)
fbank = fbank.data#(fbank.data - fbank.data.mean()) / fbank.data.std()
# 3-dim pitch
processor = PitchProcessor(frame_shift=0.01, frame_length=0.025)
options = {
'sample_rate': audio.sample_rate,
'frame_shift': 0.01, 'frame_length': 0.025,
'min_f0': 20, 'max_f0': 500}
processor = PitchProcessor(**options)
pitch = processor.process(audio)
postprocessor = PitchPostProcessor() # use default options
postpitch = postprocessor.process(pitch) # 3 dim
postpitch = postpitch.data#(postpitch.data - postpitch.data.mean()) / postpitch.data.std()
#features = postpitch
shape = min(fbank.shape[0], postpitch.shape[0])
#zero = np.zeros((,content[i].shape[1]),dtype=np.float32)
#content[i] = np.vstack((content[i],zero))
features = np.concatenate((fbank[:shape,:], postpitch[:shape,:]), axis=-1)
# name = os.path.basename(audio_path).split('.')[0] + '.npy'
# np.save(os.path.join(save_path, name), features.data)
return features
import random
import math
class Generate_arrays_from_file(Sequence):
def __init__(self, data_path_file, batch_size, stride=4, flag='train'):
# 初始化所需的参数
self.data_path_file = data_path_file
self.batch_size = batch_size
self.flag = flag
self.stride = stride
def __len__(self):
# 让代码知道这个序列的长度
with open(self.data_path_file,'r',encoding='utf-8') as f:
self.data = f.readlines()
random.shuffle(self.data)
self.all_num_epoch = math.ceil(len(self.data)/self.batch_size)
return self.all_num_epoch
# def on_epoch_end(self, epoch='per epoch end', logs={}):
# print('shuffle data')
# random.shuffle(self.data)
def __getitem__(self, idx):
# if idx == 0:
# print('shuffle data')
# random.shuffle(self.data)
batch_x = self.data[idx * self.batch_size:(idx + 1) * self.batch_size]
random.shuffle(batch_x)
# 迭代器部分
content = []
label = []#tone type
input_length=[]#某个特征输入的长度
label_length = []#label lens
label_gender = []
train_root = '/data/gq/sjc/aishell-1/data_aishell/wav/' + self.flag
#tone2index = {" ":0,"0":1,"1":2,"2":3,"3":4,"4":5}
gender2index = {'M':0,'F':1}
for d in batch_x:
audio_name = d.split('\t')[0]
audio = os.path.join(train_root, audio_name+'.wav')
x = lowf_feature(audio, save_path='/data/gq/sjc/Version_3/data1')
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
input_length.append(np.array([math.ceil(x.shape[0]/self.stride)]))#-2)
content.append(x)
label_tmp = [int(i) for i in d.split('\t')[1].split(' ')]
label_length.append(np.array([len(label_tmp)]))
label.append(label_tmp)
label_gender.append(gender2index[d.split('\t')[2].strip('\n')])
# with open('tmp6','a',encoding='utf-8') as f:
# f.write(str(self.batch_size)+'\t'+str(len(content))+'\t'+str(len(label_f))+'\t'+str(len(label_n))+'\n')
# padding audio 长度对齐
max_audio_lens = max([i.shape[0] for i in content])
# content = pad_sequences(content, maxlen=max_audio_lens, dtype='float32', padding='post', truncating='post', value=0.0)
for i in range(len(content)):
try:
if content[i].shape[0] < max_audio_lens:
# with open('tmp','a',encoding='utf-8') as f:
# f.write(str(content[i].shape)+'\t')
zero = np.zeros((max_audio_lens-content[i].shape[0],content[i].shape[1]),dtype=np.float32)
content[i] = np.vstack((content[i],zero))
except:
print(i,111111111)
print(len(content),222222222)
print(batch_x[i],33333333)
print(content[i].shape,44444444)
# with open('tmp','a',encoding='utf-8') as f:
# f.write(str(max_audio_lens)+'\t'+str(content[i].shape)+'\n')
# padding text 长度对齐
max_text_lens = max([len(i) for i in label])
# label = pad_sequences(label, maxlen=max_text_lens, dtype='float32', padding='post', truncating='post', value=0.0)
for i in range(len(label)):
if len(label[i]) < max_text_lens:
# with open('tmp2','a',encoding='utf-8') as f:
# f.write(str(len(label[i]))+'\t')
zero = []
for j in range(max_text_lens-len(label[i])):
zero.append(-1) # 5 is the space
label[i].extend(zero)
label[i] = np.array(label[i])
# with open('tmp2','a',encoding='utf-8') as f:
# f.write(str(max_text_lens)+'\t'+str(label[i].shape)+'\n')
#del zero
#del max_audio_lens
#del max_text_lens
inputs = {'the_inputs': np.array(content,dtype=np.float32),
'the_labels': np.array(label,dtype=np.float32),
'input_length': np.array(input_length,dtype=np.int32),
'label_length': np.array(label_length,dtype=np.int32)}
outputs = {'ctc': np.zeros([len(label)]), 'gender': np_utils.to_categorical(label_gender,num_classes = 2)} # dummy data for dummy loss function
return inputs, outputs
def resblock(cnn_input, f, k, activation, size,num_heads,batch_size):
cnn_in = Conv1D(filters=f//2,kernel_size=1,strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input)
cnn_in=BatchNormalization()(cnn_in)
cnn_in=GELU(cnn_in)
cnn = muti_channel_sa(cnn_in, 'softmax', batch_size, attention_width=None,num_channels=num_heads)
cnn=BatchNormalization()(cnn)
cnn=GELU(cnn)
cnn = concatenate([cnn,cnn_in],-1)
cnn = Conv1D(filters=f,kernel_size=1,strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn)
cnn=BatchNormalization()(cnn)
cnn = add([cnn,cnn_input])
cnn=GELU(cnn)
return cnn
def muti_channel_sa(cnn_input, activation, batch_size, attention_width=None, num_channels=8):
input_shape = cnn_input.shape
if attention_width != None:
attention_width = min(attention_width, input_shape[1])
if num_channels == 1:
cnn_output = SeqSelfAttention(attention_width=attention_width,attention_activation=activation)(cnn_input)
else:
cnn_output=[]
for nh in range(num_channels):
cnn_output.append(SeqSelfAttention(attention_width=attention_width,attention_activation=activation)(cnn_input))
cnn_output = concatenate(cnn_output,-1)
cnn_output = TimeDistributed(Dropout(0.1))(cnn_output)
return cnn_output
def GELU(cnn_input):
flag=3
if flag == 1:
cdf = Lambda(lambda x: 0.5 * (1.0 + tf.erf(x / tf.sqrt(2.0))))(cnn_input)
return multiply([cnn_input, cdf])
elif flag == 2:
return Mish(cnn_input)
elif flag == 3:
return Activation('relu')(cnn_input)
def Mish(cnn_input):
return Lambda(lambda x: x * tf.tanh(tf.nn.softplus(x)))(cnn_input)
def blur_pool_func(x, filt_size=3, stride=2):
stride = (stride,stride)
padding = ( (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ), (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ) )
if(filt_size==1):
k = np.array([1.,])
elif(filt_size==2):
k = np.array([1., 1.])
elif(filt_size==3):
k = np.array([1., 2., 1.])
elif(filt_size==4):
k = np.array([1., 3., 3., 1.])
elif(filt_size==5):
k = np.array([1., 4., 6., 4., 1.])
elif(filt_size==6):
k = np.array([1., 5., 10., 10., 5., 1.])
elif(filt_size==7):
k = np.array([1., 6., 15., 20., 15., 6., 1.])
#k = a
k = k[:,None]*k[None,:]
k = k / np.sum(k)
k = np.tile (k[:,:,None,None], (1,1,K.int_shape(x)[-1],1) )
k = K.constant (k, dtype=K.floatx() )
x = K.spatial_2d_padding(x, padding=padding)
x = K.depthwise_conv2d(x, k, strides=stride, padding='valid')
return x
def blur_pool(cnn_input, filt_size=3, stride=2):
#return blur_pool_func(cnn_input, filt_size=filt_size, stride=stride)
return Lambda(lambda x: blur_pool_func(x, filt_size=filt_size, stride=stride))(cnn_input)
# 被creatModel调用,用作ctc损失的计算
def ctc_loss_lambda(args):
labels, y_pred, input_length, label_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
#y_pred = y_pred[:, 2:, :]
y_pred = y_pred[:, :, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def muti_scale_cnn2d(cnn_input_2d, filters_2d, strides, mode='add'):
cnn2d = Conv2D(filters=filters_2d,kernel_size=[1,3],strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_2d)
cnn2d=BatchNormalization()(cnn2d)
cnn2d_1=GELU(cnn2d)
cnn2d = Conv2D(filters=filters_2d,kernel_size=[3,1],strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_2d)
cnn2d=BatchNormalization()(cnn2d)
cnn2d_2=GELU(cnn2d)
cnn2d = Conv2D(filters=filters_2d,kernel_size=[3,3],strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_2d)
cnn2d=BatchNormalization()(cnn2d)
cnn2d_3=GELU(cnn2d)
if mode== 'add':
cnn2d = Conv2D(filters=filters_2d,kernel_size=[1,1],strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_2d)
cnn2d=BatchNormalization()(cnn2d)
cnn2d=GELU(cnn2d)
cnn2d = add([cnn2d_1, cnn2d_2, cnn2d_3, cnn2d])
else:
cnn2d = concatenate([cnn2d_1, cnn2d_2,cnn2d_3, cnn_input_2d],-1)
cnn2d = Conv2D(filters=filters_2d,kernel_size=[5,5],strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn2d)
cnn2d=BatchNormalization()(cnn2d)
cnn2d=GELU(cnn2d)
cnn2d=blur_pool(cnn2d, filt_size=5, stride=strides)
return cnn2d
def muti_scale_cnn1d(cnn_input_1d, filters_1d, mode='add'):
cnn1d = Conv1D(filters=filters_1d,kernel_size=1,strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_1d)
cnn1d=BatchNormalization()(cnn1d)
cnn1d_1=GELU(cnn1d)
cnn1d = Conv1D(filters=filters_1d,kernel_size=3,strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_1d)
cnn1d=BatchNormalization()(cnn1d)
cnn1d_2=GELU(cnn1d)
cnn1d = Conv1D(filters=filters_1d,kernel_size=5,strides=1,padding='same', kernel_initializer=TruncatedNormal(stddev=0.02))(cnn_input_1d)
cnn1d=BatchNormalization()(cnn1d)
cnn1d_3=GELU(cnn1d)
if mode== 'add':
cnn1d = add([cnn1d_1, cnn1d_2, cnn1d_3])
else:
cnn1d = concatenate([cnn1d_1, cnn1d_2, cnn1d_3],-1)
return cnn1d
def CNN(frame,channels,batch_size,droprate,lr,activation):
cnn_input = Input(shape=(frame, channels), name='the_inputs', dtype='float32')
cnn_input_2d=Reshape((-1, channels, 1))(cnn_input)
cnn2d= muti_scale_cnn2d(cnn_input_2d, filters_2d=16, strides=2, mode='add')
channels = channels//2 if channels%2 == 0 else channels//2+1
cnn2d= muti_scale_cnn2d(cnn2d, filters_2d=32, strides=2, mode='add')
channels = channels//2 if channels%2 == 0 else channels//2+1
cnn2d= muti_scale_cnn2d(cnn2d, filters_2d=64, strides=2, mode='add')
channels = channels//2 if channels%2 == 0 else channels//2+1
cnn2d=Reshape((-1, channels*64))(cnn2d)
cnn2d = TimeDistributed(Dropout(0.2))(cnn2d)
cnn=muti_scale_cnn1d(cnn2d, filters_1d=64, mode='add')
cnn_pos = TrigPosEmbedding(output_dim=64,mode=TrigPosEmbedding.MODE_ADD)(cnn)
cnn1 = resblock(cnn_pos, 64, 3, activation, 7, 4,batch_size)
cnn_pos = TrigPosEmbedding(output_dim=64,mode=TrigPosEmbedding.MODE_ADD)(cnn1)
cnn2 = resblock(cnn_pos, 64, 3, activation, 5, 4,batch_size)
cnn_pos = TrigPosEmbedding(output_dim=64,mode=TrigPosEmbedding.MODE_ADD)(cnn2)
cnn1 = resblock(cnn_pos, 64, 3, activation, 5, 4,batch_size)
cnn_pos = TrigPosEmbedding(output_dim=64,mode=TrigPosEmbedding.MODE_ADD)(cnn1)
cnn2 = resblock(cnn_pos, 64, 3, activation, 3, 4,batch_size)
cnn3 = TimeDistributed(Dropout(0.2))(cnn2)
cnn=muti_scale_cnn1d(cnn3, filters_1d=32, mode='concat')
cnn = TimeDistributed(Dropout(0.5))(cnn)
cnn_g=muti_scale_cnn1d(cnn, filters_1d=4, mode='concat')
cnn = concatenate([cnn, cnn_g],-1)
cnn_gg = GlobalAveragePooling1D()(cnn_g)
cnn_gender=Dense(2,activation='softmax', kernel_initializer=TruncatedNormal(stddev=0.02), name='gender')(cnn_gg)
cnn_output=TimeDistributed(Dense(6,activation='softmax', kernel_initializer=TruncatedNormal(stddev=0.02)), name='softmax')(cnn)
print('\n',"USE:",'\n')
model_optput = Model(inputs=[cnn_input],outputs=[cnn_output])
model_optput.summary()
model_optput_g = Model(inputs=[cnn_input],outputs=[cnn_output,cnn_gender])
#ctc loss
labels = Input(name='the_labels', shape=[None], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int32')
label_length = Input(name='label_length', shape=[1], dtype='int32')
ctc_loss = Lambda(ctc_loss_lambda, output_shape=(1,), name='ctc')([labels, cnn_output, input_length, label_length])
model = Model(inputs=[cnn_input, labels, input_length, label_length],outputs=[ctc_loss,cnn_gender])
test_func = K.function([cnn_input], [cnn_output])#0 = test, 1 = train
return model, model_optput, test_func, model_optput_g
def tonet(train_data,train_label,test_data,test_label,test_label_f, test_label_n, test_label_s, frame,channels,droprate,lr,activation):
val_content, val_label, val_input_length = get_data(data_path_file="test", root = '/data/gq/sjc/aishell-1/data_aishell/wav/test', stride=8, test_num=None)
batch_size = 32
model, model_optput, test_func, model_optput_g = CNN(frame,channels,batch_size,droprate,lr,activation)
adabd=AdaBound(lr=lr,
final_lr=0.1,
gamma=1e-03,
weight_decay=0.,
amsbound=False)
model.compile(optimizer=adabd,
loss=[lambda y_true,y_pred: y_pred, 'categorical_crossentropy'],
loss_weights=[0.9,0.1])
print("training ==========~~~~~~~~=======")
tensorBoard = TensorBoard(
log_dir='./log_dir',
batch_size=batch_size,
update_freq = 'epoch'
)
metric = MetricCallback(test_func, val_content, val_label, val_input_length, batch_size=1, test_num=None)
#train data
my_training_batch_generator = Generate_arrays_from_file("train",batch_size,stride=8,flag='train')
#dev data
my_validation_batch_generator = Generate_arrays_from_file("test",batch_size,stride=8,flag='test')
# 保存full模型
full_checkpointer = OutputModelCheckpoint(model, filepath="Models/full_tone.{epoch:04d}-{val_loss:.6f}.hdf5", verbose=1, save_weights_only=True, save_best_only=True, monitor='val_loss')
# 保存声调模型
checkpointer = OutputModelCheckpoint(model_optput, filepath="Models/tone.{epoch:04d}-{val_loss:.6f}.hdf5", verbose=1, save_weights_only=True, save_best_only=True, monitor='val_loss')
checkpointer_g = OutputModelCheckpoint(model_optput_g, filepath="Models/tone_g.{epoch:04d}-{val_loss:.6f}.hdf5", verbose=1, save_weights_only=True, save_best_only=True, monitor='val_loss')
#model.fit(train_data, train_label, validation_split=0.1,shuffle=True, epochs=20,verbose=1,batch_size=128,callbacks=[checkpointer])
model.fit_generator(generator=my_training_batch_generator, steps_per_epoch=None, epochs=1000, verbose=1,
callbacks=[full_checkpointer,checkpointer,checkpointer_g,metric,tensorBoard], validation_data=my_validation_batch_generator,
max_queue_size=1280, workers=16, use_multiprocessing=True,shuffle=True)
K.get_session().graph.finalize()
def decode(y_pred, input_length):
decoded = []
prob = []
for i in range(0,y_pred.shape[0]):
decoded_batch = []
prob_batch = []
for j in range(0,y_pred.shape[1]):
decoded_batch.append(np.argmax(y_pred[i][j]))
prob_batch.append(y_pred[i][j][decoded_batch[-1]])
if not input_length[i]:
break
input_length[i] -= 1
temp = [k for k, g in groupby(decoded_batch)]
temp[:] = [x for x in temp if x != [6]]
decoded.append(np.array(temp, dtype='int32'))
prob.append(np.array(prob_batch, dtype='float32').mean())
return np.array(decoded), np.array(prob)
def decode_batch(test_func, batch, input_length,ctc_dc):
output = test_func([batch])[0]
tone, prob = ctc_dc.ctc_decode_tf(output, input_length)
return tone[0], prob
def decode_batch_predict(test_func, batch, input_length,ctc_dc):
output = test_func.predict([batch], batch_size=len(batch))
tone, prob = ctc_dc.ctc_decode_tf(output, input_length)
return tone[0], prob
class Ctc_Decode:
# 用tf定义一个专门ctc解码的图和会话,就不会一直增加节点了,速度快了很多
def __init__(self ,batch_size, timestep, nclass):
self.batch_size = batch_size
self.timestep = timestep
self.nclass = nclass
self.graph_ctc = tf.Graph()
with self.graph_ctc.as_default():
with tf.device('/cpu:0'):
self.y_pred_tensor = tf.placeholder(shape=[self.batch_size, self.timestep, self.nclass], dtype=tf.float32, name="y_pred_tensor")
self.input_length_tensor = tf.placeholder(shape=[self.batch_size,], dtype=tf.int32, name="input_length_tensor")
self.decoded_sequences, self.prob = self.ctc_decode(self.y_pred_tensor, self.input_length_tensor, greedy=True, beam_width=100,
top_paths=1, merge_repeated=True)
self.ctc_sess = tf.Session(graph=self.graph_ctc)
def ctc_decode_tf(self, y_pred, input_length):
#y_pred, input_length = args
decoded_sequences, prob = self.ctc_sess.run([self.decoded_sequences,self.prob],
feed_dict={self.y_pred_tensor: y_pred, self.input_length_tensor: input_length})
return decoded_sequences, prob
def ctc_decode(self, y_pred, input_length, greedy=True, beam_width=100,
top_paths=1, merge_repeated=False):
"""Decodes the output of a softmax.
Can use either greedy search (also known as best path)
or a constrained dictionary search.
# Arguments
y_pred: tensor `(samples, time_steps, num_categories)`
containing the prediction, or output of the softmax.
input_length: tensor `(samples, )` containing the sequence length for
each batch item in `y_pred`.
greedy: perform much faster best-path search if `True`.
This does not use a dictionary.
beam_width: if `greedy` is `False`: a beam search decoder will be used
with a beam of this width.
top_paths: if `greedy` is `False`,
how many of the most probable paths will be returned.
merge_repeated: if `greedy` is `False`,
merge repeated classes in the output beams.
# Returns
Tuple:
List: if `greedy` is `True`, returns a list of one element that
contains the decoded sequence.
If `False`, returns the `top_paths` most probable
decoded sequences.
Important: blank labels are returned as `-1`.
Tensor `(top_paths, )` that contains
the log probability of each decoded sequence.
"""
_EPSILON = 1e-7
y_pred = tf_math_ops.log(tf.transpose(y_pred, perm=[1, 0, 2]) + _EPSILON)
input_length = tf.cast(input_length, tf.int32)
if greedy:
(decoded, log_prob) = ctc_ops.ctc_greedy_decoder(
inputs=y_pred,
sequence_length=input_length)
else:
(decoded, log_prob) = ctc_ops.ctc_beam_search_decoder(
inputs=y_pred,
sequence_length=input_length, beam_width=beam_width,
top_paths=top_paths, merge_repeated=merge_repeated)
decoded_dense = []
for st in decoded:
dense_tensor = tf.sparse.to_dense(st, default_value=-1)
decoded_dense.append(dense_tensor)
return decoded_dense, log_prob
#ctc 解码
def decode_ctc(y_pred, input_length):
input_length = K.variable(input_length)
ret = K.ctc_decode(y_pred, input_length, greedy = True, beam_width=100, top_paths=10)
ret = K.get_value(ret)
print(ret,2)
tone = ret[0][0]
prob = ret[0][1]
return tone, prob
def predict(model_path, file_path, frame,channels,droprate,lr,activation):
from keras.models import load_model
from keras.utils import np_utils
import time
batch_size = 1
_, model, test_func, model_g = CNN(frame,channels,batch_size,droprate,lr,activation)
model.load_weights(model_path)
test_data,test_label,input_length=get_data(file_path, root = '/data/gq/sjc/aishell-1/data_aishell/wav/test', stride=8, test_num=None)
ctc_class = Ctc_Decode(batch_size=None,timestep=None, nclass=6)
print('this is a test \n')
test_num = len(test_data)
y_pred = []
prob = []
s = time.time()
for i in range(test_num):
inputs = np.array([test_data[i]])
y_pred_tmp, prob_tmp = decode_batch_predict(model, inputs,[input_length[i]],ctc_class)
y_pred.extend(y_pred_tmp)
prob.extend(prob_tmp)
e = time.time()
print('time:',e-s)
y_pred = [''.join([str(int(p)).replace('-1', '') for p in pred]) for pred in y_pred]
y_true = [''.join([str(t) for t in true]) for true in test_label[0:test_num]]
with open('tmp6', 'a', encoding='utf-8') as f:
f.write( str(list(zip(y_pred, y_true))) + '\n' )
_, mean, ops, t_each_tone = wers2(y_true, y_pred)
print('WER(%s):'%(test_num), mean,'\n')
print('ops:',ops)
print('each_tone:',t_each_tone)
del y_pred_tmp
del prob_tmp
def main():
#train_data,train_label=get_data('train')
train_data,train_label,test_data,test_label,test_label_f, test_label_n, test_label_s=[],[],[],[],[],[],[]
# test_data,test_label,test_label_f, test_label_n, test_label_s=get_data('test28')
frame = None#470
channels = 43
droprate = 0.1
lr = 0.001
activation = 'relu'
#tonet(train_data,train_label,test_data,test_label,test_label_f, test_label_n, test_label_s, frame,channels,droprate,lr,activation)
predict("Models/tone.0193-4.304704.hdf5", 'test', frame,channels,droprate,lr,activation)
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
main()