-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_integrative_analysis_results.Rmd
81 lines (57 loc) · 2.78 KB
/
06_integrative_analysis_results.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
title: "Integrative analysis of colon and small intestine"
author: "A. Gabor"
date: "9/15/2020"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
```
```{r load_results_1, include=FALSE}
meta_pkn <- read_csv(file = "./data/meta_prior_knowledge/meta_network_carnival_ready_exch_solved_fullomni_metfiltered.csv")
meta_network_colon <- read_rds("./data/carnival_inputs/meta_pkn_colon.rds")
meta_network_si <- read_rds("./data/carnival_inputs/meta_pkn_si.rds")
metabolomics <- read_rds("./data/carnival_inputs/human_metabolomics_data.rds")
metabolomics_raw <- read_rds("./data/5-FU in vitro human/metabolomics/raw_metabolomics_tidy.rds")
transcriptomics <-
tf_activity <- read_rds("./data/carnival_inputs/human_tf_data.rds")
rna_seq_colon <- read_rds("./data/5-FU in vitro human/transcriptomics/colon/colon_transcriptomics_diffExp_filtered_data.rds")
rna_seq_si <- read_rds("./data/5-FU in vitro human/transcriptomics/SI/SI_transcriptomics_diffExp_filtered_data.rds")
expressed_genes_SI <- read_rds("./data/carnival_inputs/expressed_genes_human_SI.rds")
expressed_genes_colon <- read_rds("./data/carnival_inputs/expressed_genes_human_colon.rds")
```
## Overview of the results
### Prior knowledge
#### Metabolites
The general prior knowledge contains metabolites, metabolic enzymes, proteins,
kinases and phosphatases, transcription factors. The resources were collected from
OmnipathDB, STICHdb and RECON3D. The collection is part of the COSMOS package by
Aurelien Dugourd.
```{r pressure, echo=FALSE}
pkn_metabolites <- tibble(nodes = c(meta_pkn$source, meta_pkn$target)) %>%
filter(grepl("XMetab__",x = nodes)) %>%
mutate(nodes = gsub("__[a-z]__","",x = nodes)) %>%
mutate(nodes = gsub("XMetab__","",x = nodes)) %>%
mutate(nodes = gsub("___","",x = nodes)) %>%
unique()
pkn_metabolites_pubchem = pkn_metabolites %>% filter(grepl("^[0-9]+$",nodes))
data_matabolites <- unique(metabolomics_raw$`PubChem ID`)
metabolomics_raw %>% filter(`PubChem ID` %in% pkn_metabolites$nodes ) %>%
filter(`q-value (FDR)` < 0.05) %>% pull(`PubChem ID`) %>% unique() %>% length()
```
The prior knowledge contains `R nrow(pkn_metabolites)` unique metabolites across
multiple compartments. Only `R nrow(pkn_metabolites_pubchem)` metabolites has a
pubChemID. The data contains `R length(data_matabolites)` unique
metabolites with pubchemID and `R sum(data_matabolites %in% pkn_metabolites$nodes)`
are included in the prior knowledge.
#### Gene expression
For TF activity measurements
```{r}
proteins <- tibble(nodes = c(meta_pkn$source, meta_pkn$target)) %>%
filter(!grepl("XMetab__",x = nodes)) %>%
mutate(nodes = gsub("__[a-z]__","",x = nodes)) %>%
mutate(nodes = gsub("XMetab__","",x = nodes)) %>%
mutate(nodes = gsub("___","",x = nodes)) %>%
unique()
```