Skip to content

Question on the GraphConsis #12

@zltyrzshy

Description

@zltyrzshy

When I tried to run GraphConsis, I found that the model always predicted all nodes as negative (normal nodes), resulting in AUC=0.5000, F1=score=0.0000. I tried to modify the parameters, mainly for the learning rate and epoch, and other parameters. Consistent with the paper, I am very confused. The parameters are as follows:
parser.add_argument('--seed', type=int, default=42, help='random seed') parser.add_argument('--epochs', type=int, default=5,help='number of epochs to train') parser.add_argument('--batch_size', type=int, default=512, help='batch size') parser.add_argument('--train_size', type=float, default=0.8,help='training set percentage') parser.add_argument('--lr', type=float, default=0.1, help='learning rate') parser.add_argument('--nhid', type=int, default=128, help='number of hidden units') parser.add_argument('--sample_sizes', type=list, default=[10, 5],help='number of samples for each layer') parser.add_argument('--identity_dim', type=int, default=32,help='dimension of context embedding') parser.add_argument('--eps', type=float, default=0.001,help='consistency score threshold ε') args = parser.parse_args()

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions