Skip to content

Commit 2b172b9

Browse files
committed
remove some commented code
1 parent b3da9ad commit 2b172b9

File tree

1 file changed

+20
-24
lines changed

1 file changed

+20
-24
lines changed

src/sage/rings/number_field/class_group.py

Lines changed: 20 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -267,23 +267,21 @@ def __mul__(self, other):
267267
check=False)
268268

269269
def lcm(self, other) -> "Modulus":
270+
"""
271+
missing documentation
272+
"""
270273
inf = tuple(set(self.infinite_part()).union(other.infinite_part()))
271-
# Pe_out = []
272274
self_fact_P, self_fact_e = zip(*self.finite_part().factor())
273275
self_fact_P = list(self_fact_P)
274276
self_fact_e = list(self_fact_e)
275-
# self_facts = self.finite_part().factor()
276-
# of = other.finite_part()
277277
other_facts = other.finite_part().factor()
278278
mf = self._number_field.ideal_monoid().one()
279279
for P, e in other_facts:
280280
try:
281281
i = self_fact_P.index(P)
282282
except ValueError:
283-
# Pe_out.append([P, e])
284283
mf *= P**e
285284
continue
286-
# Pe_out.append([P, max(e, self_fact_e[i])])
287285
mf *= P**max(e, self_fact_e[i])
288286
del self_fact_P[i]
289287
del self_fact_e[i]
@@ -292,6 +290,9 @@ def lcm(self, other) -> "Modulus":
292290
return Modulus(mf, inf, check=False)
293291

294292
def divides(self, other) -> bool:
293+
"""
294+
missing documentation
295+
"""
295296
if not set(self.infinite_part()).issubset(other.infinite_part()):
296297
return False
297298
return self.finite_part().divides(other.finite_part())
@@ -324,12 +325,6 @@ def finite_factors(self):
324325
self._finite_factors = self.finite_part().factor()
325326
return self._finite_factors
326327

327-
# def _pari_finite_factors(self):
328-
# """
329-
# Return
330-
# """
331-
# return self._number_field.pari_nf().idealfactor(self._finite)
332-
333328
def equivalent_coprime_ideal_multiplier(self, I, other):
334329
r"""
335330
Given ``I`` coprime to this modulus `m`, return a number field element `\beta`
@@ -394,7 +389,7 @@ def equivalent_ideal_coprime_to_other(self, I, other):
394389
"""
395390
return self.equivalent_coprime_ideal_multiplier(I, other) * I
396391

397-
def number_is_one_mod_star(self, a):
392+
def number_is_one_mod_star(self, a) -> bool:
398393
"""
399394
missing documentation
400395
"""
@@ -430,7 +425,10 @@ def fix_signs(self, a):
430425
return t * a
431426

432427
def get_one_mod_star_finite_with_fixed_signs(self, positive, negative):
433-
if len(negative) == 0:
428+
"""
429+
missing documentation
430+
"""
431+
if not negative:
434432
return self.number_field().one()
435433
negative = tuple(negative)
436434
try:
@@ -485,10 +483,10 @@ def _signs(self, b):
485483
sigmas = self._number_field.real_places()
486484
return [ZZ.one() if sigmas[i](b).sign() == -1 else ZZ.zero() for i in self.infinite_part()]
487485

488-
def is_finite(self):
486+
def is_finite(self) -> bool:
489487
return len(self._infinite) == 0
490488

491-
def is_infinite(self):
489+
def is_infinite(self) -> bool:
492490
return self._finite.is_one()
493491

494492
def __pari__(self):
@@ -518,7 +516,7 @@ def __pari__(self):
518516
inf_mod[pari_index] = 1
519517
return pari([self._finite, inf_mod])
520518

521-
def __hash__(self):
519+
def __hash__(self) -> int:
522520
"""
523521
Return the hash of ``self``.
524522
"""
@@ -676,7 +674,7 @@ def inverse(self):
676674

677675
__invert__ = inverse
678676

679-
def is_principal(self):
677+
def is_principal(self) -> bool:
680678
r"""
681679
Return ``True`` iff this ideal class is the trivial (principal) class.
682680
@@ -923,10 +921,6 @@ def ideal(self, reduce=True):
923921
I = R.ideal_reduce(I)
924922
return I
925923

926-
# def reduce(self):
927-
# nf = self.parent()._number_field.pari_nf()
928-
# return RayClassGroupElement(self.parent(), self.exponents(), nf.idealred(self.value()))
929-
930924

931925
class SFractionalIdealClass(FractionalIdealClass):
932926
r"""
@@ -1197,7 +1191,7 @@ def _iter_inner(self, i0, k):
11971191
i0 = i0 * gk
11981192
return
11991193

1200-
def _repr_(self):
1194+
def _repr_(self) -> str:
12011195
r"""
12021196
Return string representation of ``self``.
12031197
@@ -1238,7 +1232,8 @@ def number_field(self):
12381232
class RayClassGroup(AbelianGroup_class):
12391233
Element = RayClassGroupElement
12401234

1241-
def __init__(self, gens_orders, names, modulus, gens, bnr, proof=True):
1235+
def __init__(self, gens_orders, names, modulus,
1236+
gens, bnr, proof=True) -> None:
12421237
r"""
12431238
``gens`` -- a tuple of pari extended ideals
12441239
"""
@@ -1433,6 +1428,7 @@ def _ideal_log(self, ideal):
14331428

14341429
def ideal_reduce(self, ideal):
14351430
"""
1431+
missing documentation
14361432
"""
14371433
ideal = pari(ideal)
14381434
try:
@@ -1577,7 +1573,7 @@ def _element_constructor_(self, *args, **kwds):
15771573
raise TypeError("The zero ideal is not a fractional ideal")
15781574
return self.element_class(self, None, I)
15791575

1580-
def _repr_(self):
1576+
def _repr_(self) -> str:
15811577
r"""
15821578
Return string representation of this S-class group.
15831579

0 commit comments

Comments
 (0)