-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathplot_funcs.py
1031 lines (760 loc) · 30.6 KB
/
plot_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import matplotlib.pyplot as plt
import os
import seaborn as sns
import pandas as pd
from IPython.display import display
from funcs import get_parc_sizes
from scipy.stats import kstest
from scipy.stats import linregress, theilslopes
target_map = {
'anthro_height_calc': 'Standing Height (inches)',
'anthro_weight_calc': 'Measured Weight (lbs)',
'anthro_waist_cm': 'Waist Circumference (inches)',
'devhx_20_motor_dev_p': 'Motor Development',
'cbcl_scr_syn_rulebreak_r': 'CBCL RuleBreak Syndrome Scale',
'demo_prnt_age_p': 'Parent Age (yrs)',
'devhx_2_birth_wt_lbs_p': 'Birth Weight (lbs)',
'interview_age': 'Age (months)',
'lmt_scr_perc_correct': 'Little Man Test Score',
'macvs_ss_r_p': 'MACVS Religion Subscale',
'neighb_phenx_ss_mean_p': 'Neighborhood Safety',
'neurocog_pc1.bl': 'NeuroCog PCA1 (general ability)',
'neurocog_pc2.bl': 'NeuroCog PCA2 (executive function)',
'neurocog_pc3.bl': 'NeuroCog PCA3 (learning / memory)',
'nihtbx_cardsort_uncorrected': 'NIH Card Sort Test',
'nihtbx_list_uncorrected': 'NIH List Sorting Working Memory Test',
'nihtbx_pattern_uncorrected': 'NIH Comparison Processing Speed Test',
'nihtbx_picvocab_uncorrected': 'NIH Picture Vocabulary Test',
'nihtbx_reading_uncorrected': 'NIH Oral Reading Recognition Test',
'pea_wiscv_trs': 'WISC Matrix Reasoning Score',
'sports_activity_activities_p_performance': 'Summed Performance Sports Activity',
'sports_activity_activities_p_team_sport': 'Summed Team Sports Activity',
'accult_phenx_q2_p': 'Speaks Non-English Language',
'asr_scr_thought_r_binary': 'Thought Problems ASR Syndrome Scale',
'cbcl_scr_syn_aggressive_r_binary': 'CBCL Aggressive Syndrome Scale',
'devhx_12a_born_premature_p': 'Born Premature',
'devhx_15_days_incubator_p_binary': 'Incubator Days',
'devhx_18_mnths_breast_fed_p_binary': 'Months Breast Feds',
'devhx_5_twin_p': 'Has Twin',
'devhx_6_pregnancy_planned_p': 'Planned Pregnancy',
'devhx_distress_at_birth_binary': 'Distress At Birth',
'devhx_mother_probs_binary': 'Mother Pregnancy Problems',
'devhx_ss_alcohol_avg_p_binary': 'Any Alcohol During Pregnancy',
'devhx_ss_marijuana_amt_p_binary': 'Any Marijuana During Pregnancy',
'screentime_week_p_binary': 'Screen Time Week',
'screentime_weekend_p_binary': 'Screen Time Weekend',
'ksads_adhd_composite_binary': 'KSADS ADHD Composite',
'ksads_bipolar_composite_binary': 'KSADS Bipolar Composite',
'ksads_OCD_composite_binary': 'KSADS OCD Composite',
'sex_at_birth': 'Sex at Birth',
'sleep_ss_total_p_binary': 'Sleep Disturbance Scale',
'ksads_back_c_det_susp_p': 'Detentions / Suspensions',
'ksads_back_c_mh_sa_p': 'Mental Health Services',
'married.bl': 'Parents Married',
'prodrom_psych_ss_severity_score_binary': 'Prodromal Psychosis Score'}
rev_target_map = {target_map[k]: k for k in target_map}
def plot_avg_ranks(results, only_targets=None, across=False,
raw=False, model='average',
rank_type='Mean_Rank', log=False,
ax=None, sm=1, sep_dif_sizes=False, **kwargs):
df, parc_sizes = get_results_df(results, only_targets=only_targets, **kwargs)
if across:
plot_rank_comparison(parc_sizes, df, log=log, ax=ax,
sm=sm)
else:
if raw:
plot_raw_scores(parc_sizes, df, model=model, log=log)
else:
plot_ranks(parc_sizes, df, model=model,
rank_type=rank_type, log=log, ax=ax, sm=sm,
sep_dif_sizes=sep_dif_sizes)
def get_results_df(results, only_targets=None, **kwargs):
if 'size_max' not in kwargs:
kwargs['size_max'] = 20000
parc_sizes = get_parc_sizes('../parcels', **kwargs)
df = conv_to_df(results, only=parc_sizes, only_targets=only_targets)
return df, parc_sizes
def remove_duplicate_labels(ax):
handles, labels = ax.get_legend_handles_labels()
by_label = dict(zip(labels, handles))
ax.legend(by_label.values(), by_label.keys(), loc=1, fontsize=12)
def check_powerlaw(xs, ys, trunc=None, e_trunc=None, add_to_log=False, color=None):
if trunc is not None:
xs = xs[trunc:]
ys = ys[trunc:]
if e_trunc is not None:
xs = xs[:-e_trunc]
ys = ys[:-e_trunc]
r = linregress(np.log10(xs), np.log10(ys))
if add_to_log:
plt.plot(xs, 10**(r.intercept) * (xs **(r.slope)), color=color)
else:
plt.plot(np.log10(xs), r.slope*np.log10(xs) + r.intercept)
plt.scatter(np.log10(xs), np.log10(ys))
print('linregress slope:', r.slope, 'linregress rvalue:', r.rvalue)
ts = theilslopes(np.log10(ys), np.log10(xs))
print('Theil-Sen slope:', ts[0], '95% CI:', ts[2], ts[3])
def get_divergence(ij, in_xs, in_ys, plot=False):
i, j = ij
if i < 0 or j < 0:
return 10000
j = -j
if j == 0:
j = None
xs = in_xs.copy()[i:j]
ys = in_ys.copy()[i:j]
# Estimate fit
r = linregress(np.log10(xs), np.log10(ys))
# Get points from what should be fit
p_ys = 10**(r.intercept) * (xs **(r.slope))
k = kstest(ys, p_ys).statistic
if plot:
plt.scatter(xs, p_ys)
plt.scatter(xs, ys)
print(k)
# Return kstest
return k
def get_rt(df):
cols = list(df)
cols = [col for col in cols if col.endswith('_Rank')]
return cols[0]
def get_min_max_bounds(r_df, plot=False):
# To array
xs = np.array(r_df['Size'])
ys = np.array(r_df[get_rt(r_df)])
up_to = len(xs) // 4
# First estimate lower bound
options = [(i, 0) for i in range(up_to)]
divergences = [get_divergence(o, xs, ys) for o in options]
i = options[np.argmin(divergences)][0]
# Estimate upper based on lower
options = [(i, j) for j in range(up_to)]
divergences = [get_divergence(o, xs, ys) for o in options]
j = options[np.argmin(divergences)][1]
if plot:
get_divergence((i, j), xs, ys, plot=True)
return i, j
def get_results(results_dr):
results = {}
incomplete_cnt = 0
result_files = os.listdir(results_dr)
for file in result_files:
result = np.load(os.path.join(results_dr, file))
name = file.replace('.npy', '')
if len(file.split('---')) == 3:
if len(result) > 1:
results[name] = result
else:
incomplete_cnt += 1
else:
# Get correct name
name = '---'.join(name.split('---')[:-1])
if len(result) > 1:
try:
results[name].append(result)
except KeyError:
results[name] = [result]
# Once all 5 loaded, format correctly
if len(results[name]) == 5:
to_fill = results[name][0].copy()
to_fill[:,0] = np.mean(results[name], axis=0)[:,0]
to_fill[:,1] = np.std(results[name], axis=0)[:,0]
results[name] = to_fill
else:
incomplete_cnt += .2
print('Found:', len(results), 'Incomplete:', incomplete_cnt)
return results
def conv_to_df(results, only=None, only_targets=None):
# Check for if passed as formatted names
if only_targets is not None:
if only_targets[0] in list(rev_target_map):
only_targets = [rev_target_map[t] for t in only_targets]
parcels, models = [], []
targets, scores = [], []
stds, is_binary = [], []
for result in results:
split = result.split('---')
# Restrict to only some parcellations
if only is not None:
if split[0] not in only:
continue
# Restrict to only some targets
if only_targets is not None:
if split[2] not in only_targets:
continue
# If chunked score, skip
if isinstance(results[result], list):
continue
# Add to lists
parcels.append(split[0])
models.append(split[1])
targets.append(split[2])
score = results[result]
# If regression
if len(score) == 2:
scores.append(score[0][0])
stds.append(score[0][1])
is_binary.append(False)
# If binary
else:
scores.append(score[1][0])
stds.append(score[1][1])
is_binary.append(True)
df = pd.DataFrame()
df['parcel'] = parcels
df['model'] = models
df['is_binary'] = is_binary
df['target'] = targets
df['score'] = scores
df['std'] = stds
df = df.set_index(['model', 'parcel']).sort_index()
return df
def plot_score_by_n(parc_sizes, scores, title, ylabel, xlim=1050,
log=False, ax=None, sm=1, sep_dif_sizes=False):
# To handle either adding to existing plot or
# generate new plot.
if ax is None:
_, ax = plt.subplots(figsize=(12, 8))
# Use viridis color map
cmap = plt.get_cmap('viridis')
scores.index = ['a_' + p if 'freesurfer' in p else p for p in scores.index]
# Sort
scores = scores.sort_index(ascending=False)
for parcel in scores.index:
s = 100
score = scores.loc[parcel]
if parcel.startswith('stacked_random_'):
color = 'mediumblue'
alpha = 1
label = 'Stacked'
marker = "+"
s = 125
elif parcel.startswith('voted_random_'):
color = 'green'
alpha = 1
label = 'Voted'
marker = "+"
s = 125
elif parcel.startswith('grid_random_'):
color = 'purple'
alpha = 1
label = 'Grid'
marker = "+"
s = 125
elif 'icosahedron' in parcel:
color = cmap(0)
alpha = 1
label = 'Icosahedron'
marker = 'p'
elif 'random' in parcel:
color = 'black'
alpha = .5
label = 'Random'
marker = "+"
elif 'freesurfer' in parcel:
parcel = parcel.replace('a_', '')
color = 'orange'
alpha = 1
label = 'Freesurfer Extracted'
marker = "*"
s = 150
# Base
else:
alpha = .75
color = cmap(.7)
label = 'Existing'
marker = "o"
if sep_dif_sizes and '-' in parcel:
marker = 'x'
label += ' (across sizes)'
n_parcels = parc_sizes[parcel]
ax.scatter(n_parcels, score,
color=color, alpha=alpha,
label=label, marker=marker, s=s*sm)
# Clean y label and add
ylabel = ylabel.replace('_', '')
ax.set_ylabel(ylabel, fontsize=16)
# Set x label
ax.set_xlabel('Size / Num. Parcels', fontsize=16)
# Finishing touches
_finish_plot(ax, title, xlim, log)
def plot_scores(parc_sizes, means, ylabel, model='average', **plot_args):
if model == 'svm':
plot_score_by_n(parc_sizes, means.loc[model], 'SVM', ylabel, xlim=None, **plot_args)
elif model == 'lgbm':
plot_score_by_n(parc_sizes, means.loc[model], 'LGBM', ylabel, xlim=None, **plot_args)
elif model == 'elastic':
plot_score_by_n(parc_sizes, means.loc[model], 'Elastic-Net', ylabel, xlim=None, **plot_args)
elif model =='all':
plot_score_by_n(parc_sizes, means.loc[model], 'All-Ensemble', ylabel, xlim=None, **plot_args)
else:
# Exclude all here!
parc_means = means.loc[['svm', 'elastic', 'lgbm']].groupby('parcel').mean()
plot_score_by_n(parc_sizes, parc_means,
'Mean Across Pipelines', ylabel,
xlim=None, **plot_args)
def get_rank_func(rank_type):
if rank_type in ['Mean_Rank', 'mean']:
return mean_rank
elif rank_type in ['Median_Rank', 'median']:
return median_rank
elif rank_type in ['Max_Rank', 'max']:
return max_rank
elif rank_type in ['Min_Rank', 'min']:
return min_rank
raise RuntimeError(f'Invalid rank_type: {rank_type}')
def get_score_func(rank_type):
if rank_type in ['Mean_Rank', 'mean']:
return mean_score
elif rank_type in ['Median_Rank', 'median']:
return median_score
# Swap max and min
elif rank_type in ['Max_Rank', 'max']:
return min_score
elif rank_type in ['Min_Rank', 'min']:
return max_score
raise RuntimeError(f'Invalid rank_type: {rank_type}')
def _get_ranks_df(df):
# Get as parcel df
parcel_df = df.reset_index().set_index('parcel')
# Then convert to rank order
ranks = parcel_df.groupby(['model', 'target']).apply(get_rank_order)
# Set as correct DataFrame
ranks = ranks.to_frame().reset_index()
return ranks
def get_summary_ranks(r_df, rank_type='Mean_Rank', models='default'):
if models == 'default':
models = ['svm', 'elastic', 'lgbm']
# Get base ranks
ranks = _get_ranks_df(r_df)
# Get rank func from type
rank_func = get_rank_func(rank_type)
# Apply rank func
avgs = ranks.groupby(['model', 'parcel']).apply(rank_func)
parcel_avgs = avgs.loc[models].groupby('parcel').mean()
return pd.DataFrame(parcel_avgs, columns=[rank_type])
def get_model_avg_ranks(df):
# Get base ranks
ranks = _get_ranks_df(df)
means = ranks.groupby(['target', 'parcel']).apply(mean_rank)
scores = df.reset_index().groupby(['target', 'parcel']).apply(mean_score)
return_df = means.to_frame().rename(columns={0: 'Mean_Rank'})
return_df['Mean_Score'] = scores
return return_df.reset_index().set_index('parcel')
def get_cut_off_df(r_df):
r_df = r_df.sort_values('Size')
i, j = get_min_max_bounds(r_df)
j = -j
if j == 0:
j = None
print(i, j)
return r_df.iloc[i:j]
def get_intra_pipeline_df(results, log=False,
threshold=False,
models='default',
rank_type='Mean_Rank',
**kwargs):
if models == 'default':
models = ['lgbm', 'elastic', 'svm']
# Get each one w/ ranks seperately
r_dfs = []
for model in models:
r_df = get_ranks_sizes(results, log=log,
models=[model],
threshold=threshold,
rank_type=rank_type,
**kwargs)
r_df['Model'] = model
r_dfs.append(r_df)
intra_pipe_df = pd.concat(r_dfs)
# Clean model names
intra_pipe_df = clean_model_names(intra_pipe_df)
# Return w/ model name changed
return intra_pipe_df.rename({'Model': 'Pipeline'}, axis=1)
def get_inter_pipe_df(results, models='default',
log=False, rank_type='Mean_Rank',
**kwargs):
if models == 'default':
models = ['lgbm', 'elastic', 'svm']
# Get inter pipe df
inter_pipe_df = clean_model_names(
get_across_ranks(results, models=models,
log=log, rank_type=rank_type,
**kwargs))
# Return
return inter_pipe_df.rename({'Model': 'Pipeline'}, axis=1)
def _add_raw(df, pm_df, rank_type, models):
if models == 'default':
models = ['svm', 'elastic', 'lgbm']
# Get correct score func
score_func = get_score_func(rank_type)
# Calculate by score func summary
split_avgs = df.groupby(['is_binary', 'model', 'parcel']).apply(score_func)
# Get mean across models separate for regression / binary per parcellation
regression_means = split_avgs.loc[False, models].groupby('parcel').apply(np.mean)
binary_means = split_avgs.loc[True, models].groupby('parcel').apply(np.mean)
# Add to df
pm_df['r2'] = regression_means
pm_df['roc_auc'] = binary_means
return pm_df
def get_ranks_sizes(results, by_group=True,
avg_targets=True,
log=False, log_raw=False,
threshold=False,
only_targets=None, add_raw=False,
models='default',
keep_full_name=False,
add_ranks_labels=False,
binary_only=False,
regression_only=False,
rank_type='Mean_Rank',
**kwargs):
# Base get results df
df, parc_sizes = get_results_df(results, only_targets=only_targets, **kwargs)
# Set to subset of models here
if models == 'default':
models = ['svm', 'elastic', 'lgbm']
df = df.loc[models]
# If binary or regression only
if binary_only:
df = df[df['is_binary']]
if regression_only:
df = df[~df['is_binary']]
# Base case is average over targets
if avg_targets:
pm_df = get_summary_ranks(df, rank_type=rank_type, models=models)
# Otherwise, only average over models to get ranks
else:
pm_df = get_model_avg_ranks(df)
pm_df = target_to_name(pm_df)
pm_df['Size'] = [parc_sizes[p] for p in pm_df.index]
# Use powerlaw threshold if requested
if threshold:
pm_df = get_cut_off_df(pm_df)
print('Smallest size:', pm_df.sort_values('Size').iloc[0].Size)
print('Largest size:', pm_df.sort_values('Size').iloc[-1].Size)
# If request add raw scores - as following same type as rank, w/ mean / median / min / max
if add_raw:
pm_df = _add_raw(df, pm_df, rank_type, models)
# If request to add rank labels
if add_ranks_labels:
base = f'{rank_type}: ' + pm_df[rank_type].round(3).astype(str)
extra = f'<br>log10({rank_type}): ' + np.log10(pm_df[rank_type]).round(3).astype(str)
pm_df['rank_label'] = base + extra
base = 'Size: ' + pm_df['Size'].astype(str)
extra = '<br>log10(Size): ' + np.log10(pm_df['Size']).round(3).astype(str)
pm_df['size_label'] = base + extra
# If log results
if log:
pm_df[rank_type] = np.log10(pm_df[rank_type])
pm_df['Size'] = np.log10(pm_df['Size'])
if log_raw:
if 'r2' in pm_df:
pm_df['r2'] = np.log10(pm_df['r2'])
if 'roc_auc' in pm_df:
pm_df['roc_auc'] = np.log10(pm_df['roc_auc'])
if not by_group:
# Pretty hacky... but
if keep_full_name:
temp = pm_df.reset_index()
temp['full_name'] = temp['parcel'].apply(clean_name)
temp = temp.set_index('parcel')
pm_df['full_name'] = temp['full_name']
return pm_df
# Set another column to group
r_df = pm_df.reset_index()
if keep_full_name:
r_df['full_name'] = r_df['parcel'].copy().apply(clean_name)
# Add labels by parcel
groups = []
for parcel in r_df['parcel']:
if parcel.startswith('stacked_'):
if parcel.startswith('stacked_random_'):
label = 'Stacked'
else:
label = 'Stacked Special'
elif parcel.startswith('voted_'):
if parcel.startswith('voted_random_'):
label = 'Voted'
else:
label = 'Voted Special'
elif parcel.startswith('grid_'):
if parcel.startswith('grid_random_'):
label = 'Grid'
else:
label = 'Grid Special'
elif 'icosahedron' in parcel:
label = 'Icosahedron'
elif 'random' in parcel:
label = 'Random'
elif 'freesurfer' in parcel:
label = 'Freesurfer Extracted'
else:
label = 'Existing'
groups.append(label)
r_df['parcel'] = groups
r_df = r_df.rename({'parcel': 'Parcellation_Type'}, axis=1)
return r_df
def get_across_ranks(results, only_targets=None,
log=False,
models='default',
keep_full_name=True,
rank_type='Mean_Rank',
**kwargs):
# Get base results df
df, parc_sizes = get_results_df(results, only_targets=only_targets,
**kwargs)
# Set to subset of models here
if models == 'default':
models = ['svm', 'elastic', 'lgbm']
df = df.loc[models]
# Get base ranks sep by just target
parcel_df = df.reset_index().set_index('parcel')
ranks = parcel_df.groupby(['target']).apply(get_rank_model_order)
# Get requested rank func and use to gen scores
rank_func = get_rank_func(rank_type)
avg_ranks = ranks.groupby(['model', 'parcel']).apply(rank_func)
scores = avg_ranks.reset_index()
# Update names of columns
scores = scores.rename(columns={0: rank_type,
'model': 'Model',
'parcel': 'Parcellation'})
# Add full name if requested
if keep_full_name:
scores['full_name'] = scores['Parcellation'].copy().apply(clean_name)
# Add size
scores['Size'] = [parc_sizes[p] for p in scores['Parcellation']]
# Log size and rank if requested
if log:
scores['Size'] = np.log10(scores['Size'])
scores[rank_type] = np.log10(scores[rank_type])
return scores
def mean_score(df):
return df['score'].mean()
def median_score(df):
return df['score'].median()
def max_score(df):
return df['score'].max()
def min_score(df):
return df['score'].min()
def mean_rank(df):
return df['rank'].mean()
def median_rank(df):
return df['rank'].median()
def max_rank(df):
return df['rank'].max()
def min_rank(df):
return df['rank'].min()
def get_rank_order(df):
# Sort so that best is at top
df = df.sort_values('score', ascending=False)
# Set ranks s.t., best has rank 1
df['rank'] = np.arange(1, len(df)+1)
return df['rank']
def get_rank_model_order(df):
# Sort so that best is at top
df = df.sort_values('score', ascending=False)
# Set ranks s.t., best has rank 1
df['rank'] = np.arange(1, len(df)+1)
return df[['rank', 'model']]
def plot_ranks(parc_sizes, df, rank_type='mean',
model='average', **plot_args):
# Get base ranks
ranks = _get_ranks_df(df)
# Get rank func
rank_func = get_rank_func(rank_type)
# Get summary ranks
summary_ranks = ranks.groupby(['model', 'parcel']).apply(rank_func)
# Then plot
plot_scores(parc_sizes, summary_ranks,
ylabel=rank_type, model=model, **plot_args)
def _finish_plot(ax, title, xlim, log):
ax.legend()
remove_duplicate_labels(ax)
if xlim is not None:
ax.set_xlim(-10, xlim)
ax.xaxis.set_tick_params(labelsize=14)
ax.yaxis.set_tick_params(labelsize=14)
if log:
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_title(title, fontsize=20)
def plot_rank_comparison(parc_sizes, df,
title='Mean Rank Across Model Pipeline',
xlim=None, log=False, ax=None, sm=1):
parcel_df = df.reset_index().set_index('parcel')
ranks = parcel_df.groupby(['target']).apply(get_rank_model_order)
mean_ranks = ranks.groupby(['model', 'parcel']).apply(mean_rank)
scores = mean_ranks.reset_index()
if ax is None:
_, ax = plt.subplots(figsize=(12, 8))
cmap = plt.get_cmap('viridis')
for ind in scores.index:
s = 100
marker = "o"
alpha = .5
score = scores.loc[ind, 0]
model = scores.loc[ind, 'model']
parcel = scores.loc[ind, 'parcel']
if model == 'svm':
color = cmap(.2)
label = 'SVM'
elif model == 'elastic':
color = cmap(.5)
label = 'Elastic-Net'
elif model == 'lgbm':
color = cmap(.8)
label = 'LGBM'
elif model == 'all':
color = 'black'
label = 'All'
else:
print('SKIPPING Model = ', model)
n_parcels = parc_sizes[parcel]
ax.scatter(n_parcels, score,
color=color, alpha=alpha,
label=label, marker=marker, s=s*sm)
ax.set_ylabel('Mean Rank', fontsize=16)
ax.set_xlabel('Num. Parcels', fontsize=16)
_finish_plot(ax, title, xlim, log)
def plot_raw_scores(parc_sizes, df, avg_only=False, log=False):
split_means = df.groupby(['is_binary', 'model', 'parcel']).apply(mean_score)
regression_means = split_means.loc[False]
binary_means = split_means.loc[True]
plot_scores(parc_sizes, regression_means,
ylabel='Avg R2',
avg_only=avg_only, log=log)
plot_scores(parc_sizes, binary_means,
ylabel='Avg ROC AUC',
avg_only=avg_only, log=log)
def check_best(df, top_vals=[1, 3, 5, 10]):
models_in_top = {t : [] for t in top_vals}
for target in df.target.unique():
top_x = df[df['target'] == target].sort_values('score', ascending=False).head(top_vals[-1])
# Compute stats
for i in top_vals:
models = [top_x.index[j][0] for j in range(i)]
models_in_top[i] += models
display(top_x)
for i in top_vals:
sns.countplot(models_in_top[i])
plt.title('Models in Top ' + str(i))
plt.show()
def check_best_by_model(df, models='default'):
if models == 'default':
models = ['elastic', 'svm', 'lgbm']
# Top specific to each model for each target
for model in models:
print('Model:', model)
for target in df.target.unique():
display(df[df['target'] == target].loc[model].sort_values('score', ascending=False).head(5))
def get_single_vs_multiple_df(results, **kwargs):
r_df = get_ranks_sizes(results, by_group=False, **kwargs)
r_df = r_df.reset_index().rename(columns={'parcel': 'Parcellation_Type'})
def set_parc(row):
# Set if across sizes
row['across_sizes'] = 0
if '-' in row['Parcellation_Type']:
row['across_sizes'] = 1
row['is_ensemble'] = 0
# Set as ensemble type or Single
if 'grid_' in row['Parcellation_Type']:
row['Parcellation_Type'] = 'Grid'
elif 'stacked_' in row['Parcellation_Type']:
row['Parcellation_Type'] = 'Stacked'
row['is_ensemble'] = 1
elif 'voted_' in row['Parcellation_Type']:
row['Parcellation_Type'] = 'Voted'
row['is_ensemble'] = 1
else:
row['Parcellation_Type'] = 'Single'
return row
# Prep data frame for plotting
r_df = r_df.apply(set_parc, axis=1)
r_df = r_df.set_index('Parcellation_Type')
return r_df
def add_extra_ticks(ax, ref, r2_extra_ticks, roc_extra_ticks):
# Get name of rank col
rank_col = get_rt(ref)
ticks = ax.get_yticks()
ticks = sorted(list(ticks) + r2_extra_ticks + roc_extra_ticks)
new_labels = []
for tick in ticks:
label = str(int(tick)).rjust(3)
closest = ref.iloc[(ref[rank_col] - tick).abs().argsort()[:1]]
if int(tick) in r2_extra_ticks:
r2 = "%.3f" % closest['r2']
r2 = r2.replace('0.', '.')
label = f'[r2~={r2}] '
if int(tick) in roc_extra_ticks:
roc = "%.3f" % closest['roc_auc'].replace('0.', '.')
roc = roc.replace('0.', '.')
label = f'[auc~={roc}] '
new_labels.append(label)
ax.set_yticks(ticks)
ax.set_yticklabels(new_labels)
ax.yaxis.set_label_coords(-.075, .5)
def get_highest_performing_df(results, **kwargs):
# Get just svm non random existing
non_random_single, parc_sizes = get_results_df(results, base=True, ico=True, fs=True, **kwargs)
non_random_single.rename(index={'svm': 'existing'}, inplace=True)
# Get just stacked and voted
ensemble, parc_sizes_ensemble = get_results_df(results, stacked=True, voted=True, **kwargs)
# Make combined df
df = pd.concat([non_random_single, ensemble])
parc_sizes.update(parc_sizes_ensemble)
# Restrict to only all and svm
df = df.drop(['elastic', 'lgbm',
'elasticFS', 'lgbmFS'], level=0)
# Get as explicit comparison ranks
parcel_df = df.reset_index().set_index('parcel')
# Drop any ensembles across sizes
parcel_df = parcel_df.drop(parcel_df[['-' in i and ('voted' in i or 'stacked' in i)
for i in parcel_df.index]].index)
# Compute ranks per target, then get means
ranks = parcel_df.groupby(['target']).apply(get_rank_model_order)
mean_ranks = ranks.groupby(['model', 'parcel']).apply(mean_rank)
# Get as df
scores = mean_ranks.to_frame()
# Add raw r2 and roc auc
split_means = parcel_df.groupby(['is_binary', 'model', 'parcel']).apply(mean_score)
regression_means = split_means.loc[0]
binary_means = split_means.loc[1]
scores['r2'] = regression_means
scores['roc_auc'] = binary_means
# Reset index
scores = scores.reset_index()
# Change names
scores = scores.rename(columns={0: 'Mean_Rank',
'model': 'Model',
'parcel': 'Parcellation'})
# Add size
scores['Size'] = [parc_sizes[p] for p in scores['Parcellation']]
# Use model / strategy as index
scores = scores.set_index('Model')
return scores
def clean_name(parc):