-
Notifications
You must be signed in to change notification settings - Fork 1
/
app1.py
71 lines (64 loc) · 2.43 KB
/
app1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
import base64
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader
# Model and tokenizer loading
# model_name ="google/pegasus-large" # good
# model_name = "t5-large" # good
model_name = "facebook/bart-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
base_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# File loader and preprocessing
def file_preprocessing(file):
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=50)
texts = text_splitter.split_documents(pages)
final_texts = ""
for text in texts:
print(text)
final_texts = final_texts + text.page_content
return final_texts
# LLM pipeline
def llm_pipeline(filepath):
pipe_sum = pipeline(
'summarization',
model=base_model,
tokenizer=tokenizer,
min_length=50
)
input_text = file_preprocessing(filepath)
result = pipe_sum(input_text)
result = result[0]['summary_text']
return result
# Function to display the PDF of a given file
def displayPDF(file):
# Opening file from file path
with open(file, "rb") as f:
base64_pdf = base64.b64encode(f.read()).decode('utf-8')
# Embedding PDF in HTML
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Displ aying File
st.markdown(pdf_display, unsafe_allow_html=True)
# Streamlit code
st.set_page_config(layout="wide")
def main():
st.title("Document Summarization App")
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
if uploaded_file is not None:
if st.button("Summarize"):
col1, col2 = st.columns(2)
filepath = "data/" + uploaded_file.name
with open(filepath, "wb") as temp_file:
temp_file.write(uploaded_file.read())
with col1:
st.info("Uploaded File")
pdf_view = displayPDF(filepath)
with col2:
summary = llm_pipeline(filepath)
st.info("Summarization Complete")
st.success(summary)
if __name__ == "__main__":
main()