-
Notifications
You must be signed in to change notification settings - Fork 0
/
altair.html
60 lines (53 loc) · 1.31 KB
/
altair.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<html>
<head>
<title>Altair</title>
<meta charset="utf-8">
<link rel="stylesheet" href="../build/pyscript.css" />
<script defer src="../build/pyscript.js"></script>
<py-env>
- altair
- pandas
- vega_datasets
</py-env>
</head>
<body>
<div id="altair" style="width: 100%; height: 100%"></div>
<py-script output="altair">
import altair as alt
from vega_datasets import data
source = data.movies.url
pts = alt.selection(type="single", encodings=['x'])
rect = alt.Chart(data.movies.url).mark_rect().encode(
alt.X('IMDB_Rating:Q', bin=True),
alt.Y('Rotten_Tomatoes_Rating:Q', bin=True),
alt.Color('count()',
scale=alt.Scale(scheme='greenblue'),
legend=alt.Legend(title='Total Records')
)
)
circ = rect.mark_point().encode(
alt.ColorValue('grey'),
alt.Size('count()',
legend=alt.Legend(title='Records in Selection')
)
).transform_filter(
pts
)
bar = alt.Chart(source).mark_bar().encode(
x='Major_Genre:N',
y='count()',
color=alt.condition(pts, alt.ColorValue("steelblue"), alt.ColorValue("grey"))
).properties(
width=550,
height=200
).add_selection(pts)
alt.vconcat(
rect + circ,
bar
).resolve_legend(
color="independent",
size="independent"
)
</py-script>
</body>
</html>