@@ -49,19 +49,19 @@ knots = createKnots(values = x, n_knots = 20, degree = 3)
4949# Create basis using that knots:
5050basis = createSplineBasis(values = x , degree = 3 , knots = knots )
5151str(basis )
52- # > num [1:100, 1:24] 0.1667 0.1352 0.0832 0.0755 0.0609 ...
52+ # > num [1:100, 1:24] 0.16667 0.11991 0.0209 0.00524 0 ...
5353
5454# You can also create sparse matrices:
5555basis_sparse = createSparseSplineBasis(values = x , degree = 3 , knots = knots )
5656str(basis_sparse )
5757# > Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
58- # > ..@ i : int [1:398] 0 1 2 3 4 5 6 7 0 1 ...
59- # > ..@ p : int [1:25] 0 8 23 40 65 87 108 130 147 164 ...
58+ # > ..@ i : int [1:398] 0 1 2 3 0 1 2 3 4 5 ...
59+ # > ..@ p : int [1:25] 0 4 12 25 42 60 77 93 111 131 ...
6060# > ..@ Dim : int [1:2] 100 24
6161# > ..@ Dimnames:List of 2
6262# > .. ..$ : NULL
6363# > .. ..$ : NULL
64- # > ..@ x : num [1:398] 0.1667 0.1352 0.0832 0.0755 0.0609 ...
64+ # > ..@ x : num [1:398] 0.16667 0.11991 0.0209 0.00524 0.66667 ...
6565# > ..@ factors : list()
6666
6767# Check if row sums add up to 1:
@@ -141,9 +141,9 @@ of freedom to a penalty term:
141141``` r
142142# We use the basis and penalty matrix from above and specify 2 and 4 degrees of freedom:
143143(penalty_df2 = demmlerReinsch(t(basis ) %*% basis , K , 2 ))
144- # > [1] 1.02076e+11
144+ # > [1] 19061925739
145145(penalty_df4 = demmlerReinsch(t(basis ) %*% basis , K , 4 ))
146- # > [1] 439.9171
146+ # > [1] 438.4036
147147
148148# This is now used for a new estimator:
149149beta_df2 = myEstimator(basis , y , penalty_df2 * K )
@@ -252,12 +252,12 @@ idx = calculateIndexVector(x, bins) + 1
252252
253253head(data.frame (x = x , bins = bins [idx ]))
254254# > x bins
255- # > 1 0.3159971 0.3159971
256- # > 2 0.3469970 0.3159971
257- # > 3 0.4110397 0.3159971
258- # > 4 0.4226494 0.3159971
259- # > 5 0.4469811 0.3159971
260- # > 6 0.5170778 0.6488035
255+ # > 1 0.1315894 0.1315894
256+ # > 2 0.1799150 0.1315894
257+ # > 3 0.3638408 0.4682956
258+ # > 4 0.4497893 0.4682956
259+ # > 5 0.6709395 0.8050017
260+ # > 6 0.6744560 0.8050017
261261```
262262
263263For spline regression, we can build the basis just using the bins and
0 commit comments