Skip to content

Ambiguous error message in filling histogram #577

@bockjoo

Description

@bockjoo

Hi,
Without knowning that the variables in the histogram filling have to be arrays with the same length, I passed
a number to the binning (x-axis)and a weight of an array for the y-axis and I got this ambiguos error message:

File "/home/bockjoo/opt/cmsio2/cms/services/T2/ops/Work/AAA/vll-analysis.Coffea2024.6.1/lib/python3.12/site-packages/boost_histogram/_internal/hist.py", line 504, in fill
    self._hist.fill(*args_ars, weight=weight_ars, sample=sample_ars)  # type: ignore[arg-type]
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ValueError: spans must have compatible lengths

I am using:

Python 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import hist
>>> hist.__version__
'2.7.3'

This is the script that can demonstrate the issue:

import os
import ssl
import hist
import dask
import awkward as ak
import hist.dask as hda
import dask_awkward as dak

from coffea import processor
from coffea.nanoevents.methods import candidate
from distributed import Client
from coffea.nanoevents import NanoEventsFactory, BaseSchema, NanoAODSchema
from coffea.nanoevents.methods import candidate, nanoaod, vector
from coffea.analysis_tools import PackedSelection, Weights

class VLLProcessor(processor.ProcessorABC):
    def __init__(self, isMC=True, era="2018", writeOutParquet=False):
        self.isMC = isMC
        ak.behavior.update(nanoaod.behavior)
        dataset_axis = hda.hist.hist.axis.StrCategory([], growth=True, name="dataset", label="Dataset")
        cutflow_axis = hda.hist.hist.axis.StrCategory([], growth=True, name="cutflow",label="Cutflow")
        cut = hda.hist.hist.axis.Regular(14, 0, 14, name="cut", label=r"Cutflow")
        self.make_output = lambda: {
            "CutFlow": hda.hist.Hist(dataset_axis,cut,),
        }
        
    def process(self, events, shift_syst=None):
        dataset = events.metadata['dataset']
        output = self.make_output()
        selection = PackedSelection()
        selection.add("0", (events.Flag.goodVertices) & (events.Flag.globalSuperTightHalo2016Filter) & (events.Flag.HBHENoiseFilter) & (events.Flag.HBHENoiseIsoFilter) & 
                    (events.Flag.EcalDeadCellTriggerPrimitiveFilter) & (events.Flag.BadPFMuonFilter) & (((not (self.isMC)) & events.Flag.eeBadScFilter) | (self.isMC)) )
        wgt = selection.all("0")
        bin=0
        output["CutFlow"].fill(
                    dataset=dataset,
                    cut=b, # dak.ones_like(wgt)*bin,
                    weight=wgt,
        )
        
        return {dataset:output}        
        
    def postprocess(self, accumulator):
        pass

if __name__ == '__main__':
 filename = "root://cmsxrootd.hep.wisc.edu:1094//store/mc/RunIISummer20UL18NanoAODv9/TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8/NANOAODSIM/106X_upgrade2018_realistic_v16_L1v1-v1/130000/44187D37-0301-3942-A6F7-C723E9F4813D.root"

 events = NanoEventsFactory.from_root(
    {filename: "Events"},
    steps_per_file=2_000,
    metadata={"dataset": "TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8"},
    schemaclass=NanoAODSchema,
 ).events()
 p = VLLProcessor(isMC=True)
 out = p.process(events)

 (computed,) = dask.compute(out)
 print(computed)

Thanks,
Bockjoo

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions