-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathconfig.py
342 lines (321 loc) · 13.2 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import os
import sys
import numpy as np
from omegaconf import MISSING
from dataclasses import dataclass, field
from typing import Optional, Tuple, List, Dict, Union, Any
from os.path import realpath, abspath, join, dirname
from driver_dojo.core.types import (
CarFollowingModel,
DynamicsModel,
CarModel,
GeneratableRoad,
FeatureScaling,
Observer,
ActionSpace,
CarlaSensor,
)
@dataclass
class SimulationConfig:
work_path: str = abspath(join(dirname(__file__), '..', '..', '.driver_dojo'))
dt: float = 0.2 # Duration of one environment step
steps_per_action: int = 1 # How many time steps to repeat one action
max_time_steps: int = 300 # Maximum amount of environment steps
stand_still_timeout_after: int = max_time_steps
gui_xml_path: str = abspath(join(dirname(__file__), "..", "data", "gui.xml"))
egoID: str = "ego" # ID of ego vehicle
routeID: str = "route_ego" # ID of ego route
demand_scale: float = 1.0 # Scale traffic amount. Alert! Don't set bigger than 1.0, as this will create multiple ego spawns!
interactive: bool = False # Used for manual_control.py
keyboard_to_action: Optional[Dict] = None
seed: Optional[int] = 0
tls_off: bool = False # If traffic lights are present, turn them all off
traffic_manager_radius: float = 100.0 # How many meters' radius to keep track of traffic state around ego vehicle
# filter_traffic: bool = False # TODO: Filter observable traffic down to junction foes and ego followers and leaders
time_to_impatience: float = 10.0 # How many seconds for non-ego driver to become impatient
car_following_model: CarFollowingModel = CarFollowingModel.EIDM
lateral_resolution: float = 0.72
junction_ignore_ego: bool = False
sumo_cmd_extra_args: str = "" # TODO: Add to code.
subgoals_only_after: bool = False # If subgoals should only be added after an edge.
# init_time: float = 0.0 # How many seconds to freeze/delay spawn of the ego vehicle and initialize traffic (delay in the case of init_ego=True)
# init_traffic: bool = (
# False # Initialize the network with traffic via traci.vehicle.add()
# )
# init_traffic_spread: float = (
# 20.0 # Mean spread between spawned traffic vehicles per lane.
# )
# init_traffic_goal_strategy: Optional[
# str
# ] = False # How to select goal edge for spawned traffic
# init_traffic_exclude_edges: Optional[List[str]] = None
# init_ego: bool = False # If ego spawning should be handled through traci.vehicle.add(). Alert: This might cause problems ego routes defined through the rou.xml file.
# init_ego_start_edge: Optional[str] = None
# init_ego_goal_edge: Optional[str] = None
# init_ego_strategy: Optional[str] = None
# info: bool = False # Info logging activate
# store_for_plotting: Optional[
# str
# ] = None # Will copy every map (.net.xml and .xodr file) to the folder specified by 'store_for_plotting'
time_to_teleport: Optional[float] = -1
carla_co_simulation: bool = False
carla_path: str = (
"C:\\Users\\seegras\\Portables\\CARLA_0.9.13\\WindowsNoEditor\\CarlaUE4.exe"
)
@dataclass
class RenderingConfig:
sumo_gui: bool = False
carla_gui: bool = False # TODO
human_mode: bool = False
width: int = 512
height: int = 512
radius: int = 50
# class EgoInitializationConfig:
# enabled: bool = False
# freeze_for: float = 0.0
# from_edges: Optional[Tuple[str]] = None
# to_edges: Optional[Tuple[str]] = None
# position: Union[str, float] = '5.0'
# lane: Union[str, float] = 'free'
# speed: Union[str, float] = 'random'
#
# class TrafficInitializationConfig:
# enabled: bool = False
# edges: Optional[Tuple[str]] = None
# edges_exclude: Optional[Tuple[str]] = None
# exclude_ego_edge: bool = True
# spread: float = 10.0
# params: Tuple[str, str, str] = ('random_free', 'best', 'random') # departPos, departLane, departSpeed
#
# class TrafficSpawnConfig:
# enabled: bool = False
# edges: Optional[Tuple[str]] = None
# edges_exclude: Tuple[str] = tuple()
# params: Tuple[str, str, str] = ('base', 'free', 'random')
# period: float = 1.0
@dataclass
class ScenarioConfig:
name: str = 'intersection'
kwargs: Dict[str, Any] = field(default_factory=lambda: {})
tasks: List[str] = field(default_factory=lambda: [])
net_path: str = ''
route_path: str = ''
add_path: str = ''
seed_offset: int = 0
seeding_mode: str = 'train'
num_maps: int = 2147483647 # np.iinfo(np.int_).max # `infinity` (kind of) in the default case
num_traffic: int = 2147483647 # np.iinfo(np.int_).max
num_tasks: int = 2147483647 # np.iinfo(np.int_).max
behavior_dist: bool = False
behavior_dist_num: int = 100
behavior_dist_path: str = abspath(
join(
dirname(__file__),
"..",
"data",
"vType_distribution",
"EIDM.txt",
)
)
vTypeDistribution_py_path: str = abspath(
join(
dirname(__file__),
"..",
"..",
"tools",
"createVehTypeDistribution.py",
)
)
ego_init: bool = False
ego_init_freeze: float = 0.0
ego_from_edges: Optional[Tuple[str]] = None
ego_to_edges: Optional[Tuple[str]] = None
ego_init_position: Union[str, float] = '5.0'
ego_init_lane: Union[str, float] = 'free'
ego_init_speed: Union[str, float] = 'random'
traffic_init: bool = True
traffic_init_edges: Optional[Tuple[str]] = None
traffic_init_edges_exclude: Optional[Tuple[str]] = None
traffic_init_edges_exclude_ego: bool = True
traffic_init_spread: float = 10.0
traffic_init_params: Tuple[str, str, str] = ('random_free', 'best', 'random') # departPos, departLane, departSpeed
traffic_spawn: bool = True
traffic_spawn_edges: Optional[Tuple[str]] = None
traffic_spawn_edges_exclude: Tuple[str] = tuple()
traffic_spawn_params: Tuple[str, str, str] = ('base', 'free', 'random')
traffic_spawn_period: float = 1.0
traffic_vTypes: Optional[Tuple[str]] = None
traffic_scale: Tuple[float, float] = tuple([0.4, 0.8])
ego_vType: Optional[str] = None
generation_threading: bool = True
generation_num_threads: int = 4
generation_num_buffer: int = 20
@dataclass
class VehicleConfig:
dynamics_model: DynamicsModel = MISSING
car_model: CarModel = CarModel.BMW320i # Defines which vehicle parameters to use
v_min: float = 0.0 # Max and min velocity, 50 km/h default
v_max: float = 13.889
accel_max: float = 3.5 # m/s2 acceleration and deceleration
decel_max: float = -5.0
length: float = 4.2 # length and width of vehicle
width: float = 1.6
caster_effect: bool = False # See driver_dojo.vehicles.TUMVehicle.control(). We only use this for the manual_control.py.
course_resolution: float = 0.1
@dataclass
class DebugConfig:
debug: bool = False
visdom_host: str = 'localhost'
visdom_port: int = 8097
visdom_log_path: Optional[str] = None # Will log visdom state to file, replay with `visdom_obj.replay(log_path)`
visdom_split_episodes: bool = False
step_period: int = 30
episode_period: int = 1
verbose: bool = False
@dataclass
class ActionConfig:
space: ActionSpace = MISSING
extended_road_options: bool = False
cont_normalized_actions: bool = True
disc_dimensions: Tuple[int, int] = (5, 5) # Discretized action space: throttle and steering num discretization
hie_num_target_speeds: int = 5 # Hierarchical: number of target speeds
hie_accel: bool = False
disc_hie_cross_prod: bool = False # Discretized/Hierarchical: Cross-product action space? See code.
# @dataclass
# class VariationConfig:
# network: Optional[Tuple[GeneratableRoad]] = None
# network_list_compose: bool = False
# network_netgenerate: bool = False
# netgenerate_xml_path: str = ""
# traffic_routing: bool = False # The new traffic routing mechanism
# traffic_routing_period: Optional[
# float
# ] = None # 1/period insertions per second. If None -> One vehicle per simulation step.
# traffic_routing_start_edges: Optional[Tuple[str]] = None # On which edges to insert
# traffic_routing_goal_strategy: Optional[
# str
# ] = None # Which goal strategy to follow, i.e. how to select goal edge based from start edge
# traffic_routing_randomTrips: bool = (
# False # Generate traffic through SUMO's randomTrips.py tooling script
# )
# randomTrips_py_path: str = os.path.abspath(
# pjoin(os.path.dirname(__file__), "..", "..", "tools", "randomTrips.py")
# )
# randomTrips_args: Optional[str] = None
# randomTrips_period: float = 0.1
# traffic_vTypes: bool = True
# vTypeDistribution_py_path: str = os.path.abspath(
# pjoin(
# os.path.dirname(__file__),
# "..",
# "..",
# "tools",
# "createVehTypeDistribution.py",
# )
# )
# vTypeDistribution_config_path: str = os.path.abspath(
# pjoin(
# os.path.dirname(__file__),
# "..",
# "data",
# "vType_distribution",
# "EIDM.txt",
# )
# )
# vTypeDistribution_num: int = 200
# vTypeDistribution_args: Optional[str] = None
# emergency_break: bool = False
# emergency_break_interval: float = 10.0
# traffic_speed: bool = False
# traffic_speed_interval: float = 2.0
# traffic_speed_mult_range: Tuple[float, float] = (0.7, 1.3)
# traffic_density_range: Tuple[float, float] = (0.3, 1.0)
@dataclass
class CarlaObserverConfig:
sensor_type: CarlaSensor = MISSING
width: int = 1024
height: int = 1024
location: Tuple[float, float, float] = (0.5, 0.0, 1.7) # Relative transform w.r.t ego
rotation: Tuple[float, float, float] = (0.0, 0.0, 0.0)
# See: https://carla.readthedocs.io/en/latest/ref_sensors/ (Blueprint attributes)
attributes: Dict[str, Union[float, int, str]] = field(
default_factory=lambda: {
'fov': 90
}
)
@dataclass
class ObservationConfig:
observers: List[Observer] = field(
default_factory=lambda: [
Observer.EgoVehicle,
Observer.RadiusVehicle,
Observer.Road,
Observer.SubGoals,
#Observer.AvailableOptions,
#Observer.BirdsEye,
#Observer.Waypoints,
#Observer.RoadShape,
]
)
# carla_observers: List[CarlaObserverConfig] = field(
# default_factory=lambda: [
# CarlaObserverConfig(CarlaSensor.RGBCamera),
# CarlaObserverConfig(CarlaSensor.DepthCamera)
# ]
# )
carla_observers: List[CarlaObserverConfig] = field(
default_factory=lambda: []
)
feature_scaling: Optional[FeatureScaling] = FeatureScaling.Standardize
relative_to_ego: bool = True # Compute x, y and angles relative to ego
rvo_radius: float = 50.0 # RadiusVehicleObserver
rvo_num_vehicles: int = 16
rvo_speed_range: Tuple[float, float] = (0, 19.444)
rvo_accel_range: Tuple[int, int] = (-10, 10)
rvo_signals: bool = True
rvo_context: bool = True
wp_num: int = 5
wp_sampling_dist: float = 4.0
sub_goal_num: int = 3 # Number of next sub-goals to present to the agent
sub_goal_dist_max: float = 50.0
rs_num_rays: int = 20 # How many rays to cast for RoadObserver
rs_opening_angle: int = 180 # Opening angle into vehicle heading direction
rs_num_inter_per_ray: int = 3 # Return the n nearest intersection points per ray
rs_ray_dist: float = 50.0 # Length of a ray-cast
r_max_dist: float = 50.0
inf_fix: bool = False
@dataclass
class NavigationConfig:
step_size: float = 2.0 # Distance between waypoints
num_waypoints: int = 10 # Number of waypoints to sample per step
initial_dist: float = 5.0 # Distance of first waypoint measured from front bumper
only_end_goal: bool = False # Just use end-goal as goal
sub_goal_consume_dist: float = 6.0 # Distance at which goals are consumed
@dataclass
class RewardConfig:
timeout_penalty: float = -10.0
driving_circles_penalty: float = -10.0
collision_penalty: float = -10.0
stand_still_penalty: float = 0.0
goal_reward: float = 10.0
sub_goal_reward: float = 5.0
off_route_penalty: float = -10.0
speed_reward: float = 0.1
constant_reward: float = 0.0
progress_reward: float = 1.0
@dataclass
class Config:
simulation: SimulationConfig = SimulationConfig()
rendering: RenderingConfig = RenderingConfig()
scenario: ScenarioConfig = ScenarioConfig()
actions: ActionConfig = ActionConfig()
observations: ObservationConfig = ObservationConfig()
vehicle: VehicleConfig = VehicleConfig()
navigation: NavigationConfig = NavigationConfig()
#variation: VariationConfig = VariationConfig()
reward: RewardConfig = RewardConfig()
debug: DebugConfig = DebugConfig()
def __post_init__(self):
if not self.actions.space == ActionSpace.Semantic: # These observers only make sense for the semantic action space
assert Observer.Waypoints not in self.observations.observers
assert Observer.AvailableOptions not in self.observations.observers