-
Notifications
You must be signed in to change notification settings - Fork 1
/
BGMMfit.m
60 lines (54 loc) · 1.82 KB
/
BGMMfit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
% MATLAB implementation of the spatially-varying Gaussian mixture model
% classification algorithmfor proposed in the floowing paper:
%
% K. Kayabol and S. Kutluk, "Bayesian classification of hyperspectral
% images using spatially-varying Gaussian mixture model", Digital Signal
% Processing, vol. 59, pp. 106–114, 2016.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright (c) 2016, Koray Kayabol, Sezer Kutluk %
% <[email protected]>, <[email protected]> %
% All rights reserved %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Input:
% f : Training data matrix.
% T.index : Indeces of class labels.
% T.Npix : Number of pixels in the classes.
% labelGT : Label vector.
% L : Spectral dimension
% Output:
% Theta : Estimated parameters Theta.mu and Theta.Sigma
%
function [Theta] = BGMMfit(f,T,labelGT,L)
Kmax = length(labelGT);
TN = [T.Npix];
% prior Normal-Inverse Wishart
lamb = 0.001;
alp = 0.75;
mu0 = mean(f,1);
samplemean = zeros(Kmax,L);
SS = zeros(L,L,Kmax);
s = 0;
for k=1:Kmax
% parameter estimation
fgt = f(s+1:s+TN(k),:);
samplemean(k,:) = mean(fgt,1);
dfgt = zeros(TN(k),L);
for l=1:L
dfgt(:,l) = fgt(:,l) - samplemean(k,l);
end
SS(:,:,k) = dfgt'*dfgt/TN(k);
s = s + T(labelGT(k)).Npix;
end
SSm = mean(SS,3);
Psii = 0.25*SSm + 0.75*diag(diag(SSm));
for k = 1:Kmax
Theta(labelGT(k)).mu = (TN(k)*samplemean(k,:)+lamb*mu0)/(TN(k)+lamb);
for l=1:L
dsm(:,l) = (samplemean(:,l) - mu0(l));
end
SSM = dsm'*dsm;
tt = (alp*(TN(k)+L+1)-L-1)/(1-alp);
Theta(labelGT(k)).Sigma = alp*Psii + (1-alp)*SS(:,:,k) + ...
(TN(k)*lamb*SSM/(TN(k)+lamb) )/(TN(k) + tt + L + 1);
end