Skip to content

Files

Latest commit

 

History

History

sgl-kernel

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jun 29, 2025
Apr 3, 2025
Jun 30, 2025
Jun 29, 2025
Jun 29, 2025
Jun 29, 2025
Mar 8, 2025
Jun 29, 2025
Dec 1, 2024
Jun 24, 2025
Jun 18, 2025
Mar 30, 2025
Jun 10, 2025
Jun 24, 2025
Jun 24, 2025
Jun 24, 2025
Apr 11, 2025
Jun 23, 2025

README.md

SGL Kernel

Kernel Library for SGLang

PyPI

Installation

For CUDA 11.8:

pip3 install sgl-kernel -i https://docs.sglang.ai/whl/cu118

For CUDA 12.1 or CUDA 12.4:

pip3 install sgl-kernel

Build from source

Development build:

make build

Note:

The sgl-kernel is rapidly evolving. If you experience a compilation failure, try using make rebuild.

Build with ccache

# or `yum install -y ccache`.
apt-get install -y ccache
# Building with ccache is enabled when ccache is installed and CCACHE_DIR is set.
export CCACHE_DIR=/path/to/your/ccache/dir
export CCACHE_BACKEND=""
export CCACHE_KEEP_LOCAL_STORAGE="TRUE"
unset CCACHE_READONLY
python -m uv build --wheel -Cbuild-dir=build --color=always .

Configuring CMake Build Options

Cmake options can be configuring by adding -Ccmake.define.<option>=<value> to the uv build flags. For example, to enable building FP4 kernels, use:

python -m uv build --wheel -Cbuild-dir=build -Ccmake.define.SGL_KERNEL_ENABLE_FP4=1 --color=always .

See CMakeLists.txt for more options.

Parallel Build

We highly recommend you build sgl-kernel with Ninja. Ninja can automatically build sgl-kernel in parallel. And if you build the sgl-kernel with cmake, you need to add CMAKE_BUILD_PARALLEL_LEVEL for parallel build like:

CMAKE_BUILD_PARALLEL_LEVEL=$(nproc) python -m uv build --wheel -Cbuild-dir=build --color=always .

Developer Guide

Development Environment Setup

Use Docker to set up the development environment. See Docker setup guide.

Create and enter development container:

docker run -itd --shm-size 32g --gpus all -v $HOME/.cache:/root/.cache --ipc=host --name sglang_zhyncs lmsysorg/sglang:dev /bin/zsh
docker exec -it sglang_zhyncs /bin/zsh

Project Structure

Dependencies

Third-party libraries:

FlashAttention FYI

FA3 can fail without a enough shared memory for a some shapes, such as higher hidden_dim or some special cases. Right now, fa3 is supported for sm80/sm87 and sm86/sm89.

The main different Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x.

And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a. That means if you use A100(tested)/A*0/L20(tested)/L40/L40s/3090(tested) you can use fa3.

Kernel Development

Steps to add a new kernel:

  1. Implement the kernel in csrc
  2. Expose the interface in include/sgl_kernel_ops.h
  3. Create torch extension in csrc/common_extension.cc
  4. Update CMakeLists.txt to include new CUDA source
  5. Expose Python interface in python

Development Tips

  1. When implementing kernels in csrc, only define pure CUDA files and C++ interfaces. If you need to use Torch::tensor, use <torch/all.h> instead of <torch/extension.h>. Using <torch/extension.h> will cause compilation errors when using SABI.

  2. When creating torch extensions, add the function definition with m.def, and device binding with m.impl:

  • Using torch.compile need m.def with schema, it helps auto capture the custom kernel. Reference: How to add FakeTensor

  • How to write schema: Schema reference

    // We need def with schema here for torch.compile
    m.def(
     "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, int "
     "cublas_handle, int cuda_stream) -> ()");
    m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
  1. When exposing Python interfaces, avoid using kwargs in C++ interface kernels.

    Avoid this:

    torch.ops.sgl_kernel.apply_rope_pos_ids_cos_sin_cache.default(
        q=query.view(query.shape[0], -1, head_size),
        k=key.view(key.shape[0], -1, head_size),
        q_rope=query.view(query.shape[0], -1, head_size),
        k_rope=key.view(key.shape[0], -1, head_size),
        cos_sin_cache=cos_sin_cache,
        pos_ids=positions.long(),
        interleave=(not is_neox),
        cuda_stream=get_cuda_stream(),
    )

    Use this instead:

    torch.ops.sgl_kernel.apply_rope_pos_ids_cos_sin_cache.default(
        query.view(query.shape[0], -1, head_size),
        key.view(key.shape[0], -1, head_size),
        query.view(query.shape[0], -1, head_size),
        key.view(key.shape[0], -1, head_size),
        cos_sin_cache,
        positions.long(),
        (not is_neox),
        get_cuda_stream(),
    )

Integrating Third-Party Libraries with Data Type Conversion

When integrating new third-party libraries like flash-attention, you may encounter data type compatibility issues between the C++ interface and PyTorch bindings. For example, the third-party code might use float or int types, while PyTorch requires double and int64_t.

The reason we need double and int64_t in torch binding is that TORCH_LIBRARY handles the Python-to-C++ conversion process. Python's float data type actually corresponds to double in C++, while Python's int corresponds to int64_t in C++.

To address this issue, we provide the make_pytorch_shim function in sgl_kernel_torch_shim that handles data type conversions automatically.

When you need to support new data type conversions, you can easily add conversion functions like this:

// Map `int` -> `int64_t`
template <>
struct pytorch_library_compatible_type<int> {
  using type = int64_t;
  static int convert_from_type(int64_t arg) {
    TORCH_CHECK(arg <= std::numeric_limits<int>::max(), "int64_t value is too large to be converted  to int");
    TORCH_CHECK(arg >= std::numeric_limits<int>::min(), "int64_t value is too small to be converted to int");
    return arg;
  }
};

To use this with your library functions, simply wrap them with make_pytorch_shim:

/*
 * From flash-attention
 */
 m.impl("fwd", torch::kCUDA, make_pytorch_shim(&mha_fwd));

Testing & Benchmarking

  1. Add pytest tests in tests/, if you need to skip some test, please use @pytest.mark.skipif
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
  1. Add benchmarks using triton benchmark in benchmark/
  2. Run test suite

FAQ

  • When encountering this error while compiling using ccache: ImportError: /usr/local/lib/python3.10/dist-packages/sgl_kernel/common_ops.abi3.so: undefined symbol: _ZN3c108ListType3getERKNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEENS_4Type24SingletonOrSharedTypePtrIS9_EE, please modify the last command as follows to resolve it: python3 -m uv build --wheel -Cbuild-dir=build . --color=always --no-build-isolation .

Release new version

Update version in pyproject.toml and version.py