forked from Alibaba-MIIL/AudioClassfication
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogger.py
242 lines (214 loc) · 7.72 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import time, datetime
from collections import deque, defaultdict
import numpy as np
from typing import Optional, Tuple
epsilon = 1e-8
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
# def synchronize_between_processes(self):
# """
# Warning: does not synchronize the deque!
# """
# if not is_dist_avail_and_initialized():
# return
# t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
# dist.barrier()
# dist.all_reduce(t)
# t = t.tolist()
# self.count = int(t[0])
# self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
# def all_gather(data):
# """
# Run all_gather on arbitrary picklable data (not necessarily tensors)
# Args:
# data: any picklable object
# Returns:
# list[data]: list of data gathered from each rank
# """
# world_size = get_world_size()
# if world_size == 1:
# return [data]
# data_list = [None] * world_size
# dist.all_gather_object(data_list, data)
# return data_list
# def reduce_dict(input_dict, average=True):
# """
# Args:
# input_dict (dict): all the values will be reduced
# average (bool): whether to do average or sum
# Reduce the values in the dictionary from all processes so that all processes
# have the averaged results. Returns a dict with the same fields as
# input_dict, after reduction.
# """
# world_size = get_world_size()
# if world_size < 2:
# return input_dict
# with torch.inference_mode():
# names = []
# values = []
# # sort the keys so that they are consistent across processes
# for k in sorted(input_dict.keys()):
# names.append(k)
# values.append(input_dict[k])
# values = torch.stack(values, dim=0)
# dist.all_reduce(values)
# if average:
# values /= world_size
# reduced_dict = {k: v for k, v in zip(names, values)}
# return reduced_dict
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str} ({total_time / len(iterable):.4f} s / it)")
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
with torch.no_grad():
correct = pred.eq(target.view(1, -1).expand_as(pred))
return [correct[:k].view(-1).float().sum(0) * 100. / batch_size for k in topk]
def average_precision(output, target):
# sort examples
indices = output.argsort()[::-1]
# Computes prec@i
total_count_ = np.cumsum(np.ones((len(output), 1)))
target_ = target[indices]
ind = target_ == 1
pos_count_ = np.cumsum(ind)
total = pos_count_[-1]
pos_count_[np.logical_not(ind)] = 0
pp = pos_count_ / total_count_
precision_at_i_ = np.sum(pp)
precision_at_i = precision_at_i_/(total + epsilon)
return precision_at_i
def mAP(targs, preds):
"""Returns the model's average precision for each class
Return:
ap (FloatTensor): 1xK tensor, with avg precision for each class k
"""
if np.size(preds) == 0:
return 0
ap = np.zeros((preds.shape[1]))
# compute average precision for each class
for k in range(preds.shape[1]):
# sort scores
scores = preds[:, k]
targets = targs[:, k]
# compute average precision
ap[k] = average_precision(scores, targets)
return 100*ap.mean()